Canopy cover estimation of agroforestry based on airborne LiDAR and Landsat 8 OLI

被引:0
作者
Rudianto, Yoga [1 ]
Prasetyo, Lilik B. [1 ,2 ]
Setiawan, Yudi [1 ,2 ,4 ]
Hudjimartsu, Sahid [2 ,3 ]
机构
[1] IPB Univ, Dept Forest Resource Conservat & Ecotourism, Fac Forestry, Bogor 16680, Indonesia
[2] IPB Univ, Forests2020 Programme, Fac Forestry, Bogor 16680, Indonesia
[3] Ibn Khaldun Univ, Fac Engn & Sci, Geoinformat Informat Engn Dept, Jalan KH Soleh Iskandar KM 2, Bogor, West Jawa, Indonesia
[4] IPB Univ, Environm Res Ctr, Bogor 16680, Indonesia
来源
SIXTH INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT 2019) | 2019年 / 11372卷
关键词
Agroforestry; canopy cover; Landsat; 8; OLI; Light Detection and Ranging;
D O I
10.1117/12.2541549
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Agroforestry is a land-use system representing a variety of vegetation structures. Canopy cover is one of the most important variables in ecology, hydrology, forest management, and also canopy cover is useful for a basis for the definition of forest. Light Detection and Ranging (LiDAR) is a tool that can measure canopy cover, because it has the ability to penetrate the structured canopy. The disadvantage of LiDAR that it has limited spatial coverage and expensive to obtain data. Integration LiDAR to Landsat 8 data has the potential to overcome this limitation because Landsat 8 can provide greater spatial coverage to generate canopy cover of agroforestry estimation in Cidanau watershed, Banten Indonesia. The analysis showed that red band Landsat 8 using an exponential equation was the best to estimate canopy cover in agroforestry land use. The limitations of Landsat 8 OLI for the mapping of the canopy cover, on the high value of shrubs or grassland and high canopy cover, do not always represent actual canopy cover.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 2013, MEN PENG TERP DAS CI
[2]  
[Anonymous], 2007, Remote Sensing of the Environment
[3]  
Asra A., 2015, PENGAMBILAN SAMPEL D
[4]   General approach for in vivo recovery of cell type-specific effector gene sets [J].
Barsi, Julius C. ;
Tu, Qiang ;
Davidson, Eric H. .
GENOME RESEARCH, 2014, 24 (05) :860-868
[5]  
Environmental Systems Research Institute, 1996, US ARCVIEW SPAT AN R
[6]  
Food and Agriculture Organization, 2010, 163 FAO UN, P209
[7]   Characterizing 3D vegetation structure from space: Mission requirements [J].
Hall, Forrest G. ;
Bergen, Kathleen ;
Blair, James B. ;
Dubayah, Ralph ;
Houghton, Richard ;
Hurtt, George ;
Kellndorfer, Josef ;
Lefsky, Michael ;
Ranson, Jon ;
Saatchi, Sasan ;
Shugart, H. H. ;
Wickland, Diane .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (11) :2753-2775
[8]  
Hudjimartsu S, 2017, EMS2017 EUR MOD S MA
[9]  
Huxley P., 1999, Tropical Agroforestry
[10]  
Japan Overseas Forestry Consultants Association, 2003, FCD MAPP VER 2 US GU