On Appell sequences of polynomials of Bernoulli and Euler type

被引:36
作者
Tempesta, Piergiulio [1 ]
机构
[1] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio De Giorgi, I-56100 Pisa, Italy
关键词
generalized Bernoulli polynomials; finite operator theory; Appell sequences;
D O I
10.1016/j.jmaa.2007.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A construction of new sequences of generalized Bernoulli polynomials of first and second kind is proposed. These sequences share with the classical Bernoulli polynomials many algebraic and number theoretical properties. A class of Euler-type polynomials is also presented. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1295 / 1310
页数:16
相关论文
共 50 条
  • [21] Quadratic decomposition of Appell sequences
    Loureiro, Ana F.
    Maroni, P.
    EXPOSITIONES MATHEMATICAE, 2008, 26 (02) : 177 - 186
  • [22] Recurrence relation for the Appell sequences
    Guettai, Ghania
    Laissaoui, Diffalah
    Rahmani, Mourad
    Sebaoui, Madjid
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (05) : 414 - 429
  • [23] Diophantine equations with Appell sequences
    András Bazsó
    István Pink
    Periodica Mathematica Hungarica, 2014, 69 : 222 - 230
  • [24] Diophantine equations with Appell sequences
    Bazso, Andras
    Pink, Istvan
    PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (02) : 222 - 230
  • [25] EXISTENCE AND REDUCTION OF GENERALIZED APOSTOL-BERNOULLI, APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    ARCHIVUM MATHEMATICUM, 2019, 55 (03): : 157 - 165
  • [26] Shifted Appell Sequences in Clifford Analysis
    Dixan Peña Peña
    Results in Mathematics, 2013, 63 : 1145 - 1157
  • [27] Some Appell-Dunkl Sequences
    Ceniceros, Judit Minguez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [28] Shifted Appell Sequences in Clifford Analysis
    Pena, Dixan Pena
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1145 - 1157
  • [29] RISING FACTORIAL BERNOULLI POLYNOMIALS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2008, 14 (01) : 1 - 5
  • [30] Poly-Cauchy polynomials and generalized Bernoulli polynomials
    Komatsu T.
    Shibukawa G.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 373 - 388