On Appell sequences of polynomials of Bernoulli and Euler type

被引:36
作者
Tempesta, Piergiulio [1 ]
机构
[1] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio De Giorgi, I-56100 Pisa, Italy
关键词
generalized Bernoulli polynomials; finite operator theory; Appell sequences;
D O I
10.1016/j.jmaa.2007.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A construction of new sequences of generalized Bernoulli polynomials of first and second kind is proposed. These sequences share with the classical Bernoulli polynomials many algebraic and number theoretical properties. A class of Euler-type polynomials is also presented. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1295 / 1310
页数:16
相关论文
共 44 条
[1]   Universal higher order Bernoulli numbers and Kummer and related congruences [J].
Adelberg, A .
JOURNAL OF NUMBER THEORY, 2000, 84 (01) :119-135
[2]  
[Anonymous], 1976, INTRO MODULAR FORMS
[3]   BERNOULLI-EULER UPDOWN NUMBERS ASSOCIATED WITH FUNCTION SINGULARITIES, THEIR COMBINATORICS AND ARITHMETICS [J].
ARNOLD, VI .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (02) :537-555
[4]   THE CALCULUS OF SNAKES AND THE COMBINATORICS OF BERNOULLI, EULER AND SPRINGER NUMBERS OF COXETER GROUPS [J].
ARNOLD, VI .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (01) :1-51
[5]   ON THE KUMMER CONGRUENCES AND THE STABLE-HOMOTOPY OF BU [J].
BAKER, A ;
CLARKE, F ;
RAY, N ;
SCHWARTZ, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :385-432
[6]  
BAKER A, 1987, LECT NOTES MATH, P17
[7]  
Bernoulli J., 1713, ARS CONJECTANDI BASI, V4, P1713
[8]  
Boas R.P., 1964, Polynomial Expansions of Analytic Functions
[9]   SOME THEOREMS ON BERNOULLI AND EULER NUMBERS OF HIGHER ORDER [J].
CARLITZ, L ;
OLSON, FR .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (03) :405-421
[10]  
Carlitz L., 1952, PACIFIC J MATH, V2, P127