Parametric resonance and nonexistence of the global solution to nonlinear wave equations

被引:9
作者
Yagdjian, K [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 305, Japan
关键词
parametric resonance; nonlinear wave equations; global solution;
D O I
10.1006/jmaa.2000.7469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an example of the influence of the dependence of the coefficient of equation on time variable, and in particular oscillations in time, on a global existence of the solution to the nonlinear hyperbolic equation. Namely for arbitrary small initial data we construct a blowing up solution. (C) 2001 Academic Press.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 19 条
  • [11] Magnus W., 1966, HILLS EQUATION
  • [12] Remarks on the blow-up boundaries and rates for nonlinear wave equations
    Ohta, M
    Takamura, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) : 693 - 698
  • [13] Racke R., 1992, LECT NONLINEAR EVOLU
  • [14] Reissig M, 1999, MATH METHOD APPL SCI, V22, P937, DOI 10.1002/(SICI)1099-1476(19990725)22:11<937::AID-MMA28>3.0.CO
  • [15] 2-O
  • [16] REISSIG M, 1998, TU BERGAKADEMIE FREI
  • [17] Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms
    Todorova, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02): : 191 - 196
  • [18] TODOROVA G, 2000, NONLINEAR ANAL, V41
  • [19] Yakubovich V. A., 1975, LINEAR DIFFERENTIAL, V1