Periodic solutions of periodically perturbed functional differential equations

被引:2
作者
Ma, SW [1 ]
Wang, ZC
Yu, JS
机构
[1] Huazhong Univ Sci & Technol, Dept Automat Control, Wuhan 430074, Peoples R China
[2] Hunan Univ, Dept Math Appl, Changsha 410082, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1998年 / 43卷 / 23期
关键词
generalized degree theory; functional differential equation; mixed type; infinite delay; periodic solution;
D O I
10.1007/BF03186983
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using the generalized degree theory, some periodically perturbed functional differential equations have been proved to have at least one periodic solution if the associated homogeneous linear equations have no nontrivial periodic solution. Some known results are generalized.
引用
收藏
页码:1956 / 1959
页数:4
相关论文
共 6 条
[2]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[3]   ON THE EXISTENCE OF PERIODIC-SOLUTIONS FOR LINEAR INHOMOGENEOUS AND QUASI-LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
HATVANI, L ;
KRISZTIN, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 97 (01) :1-15
[4]  
MAWHIN J, 1979, CBMS, V40
[5]  
Murakami S., 1986, FUNKC EKVACIOJ-SER I, V29, P335
[6]   PERIODIC-SOLUTIONS OF LINEAR AND QUASI-LINEAR NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
ZHANG, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :378-392