Plasma Engineering of Basal Sulfur Sites on MoS2@Ni3S2 Nanorods for the Alkaline Hydrogen Evolution Reaction

被引:37
作者
Tong, Xin [1 ,2 ,3 ,4 ,5 ]
Li, Yun [6 ]
Ruan, Qingdong [3 ,4 ,5 ]
Pang, Ning [1 ]
Zhou, Yang [1 ]
Wu, Dajun [2 ]
Xiong, Dayuan [1 ]
Xu, Shaohui [1 ]
Wang, Lianwei [1 ]
Chu, Paul K. [3 ,4 ,5 ]
机构
[1] East China Normal Univ, Dept Elect, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China
[2] Changshu Inst Technol, Sch Elect & Informat Engn, Jiangsu Lab Adv Funct Mat, Changshu 215500, Jiangsu, Peoples R China
[3] City Univ Hong Kong, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Dept Biomed Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[6] Hanshan Normal Univ, Sch Phys & Elect Engn, Chaozhou 521041, Peoples R China
基金
中国国家自然科学基金;
关键词
active sites; hydrogen evolution reaction; interface engineering; plasma doping; 2D nanomaterials; EFFICIENT; MOS2; NANOSHEETS; CATALYSTS; ATOMS;
D O I
10.1002/advs.202104774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two-dimensional (2D) MoS2 materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma-implanted into MoS2 to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm(-2), the overpotential of Ag500-MoS2@Ni3S2/NF is 150 mV and the Tafel slope is 41.7 mV dec(-1). First-principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two-electrode overall water splitting system with Ag500-MoS2@Ni3S2/NF, a small cell voltage of 1.47 V yields 10 mA cm(-2) and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS2 boding well for hydrogen production by commercial water splitting.
引用
收藏
页数:13
相关论文
共 59 条
[1]   Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure [J].
Azcatl, Angelica ;
Qin, Xiaoye ;
Prakash, Abhijith ;
Zhang, Chenxi ;
Cheng, Lanxia ;
Wang, Qingxiao ;
Lu, Ning ;
Kim, Moon J. ;
Kim, Jiyoung ;
Cho, Kyeongjae ;
Addou, Rafik ;
Hinkle, Christopher L. ;
Appenzeller, Joerg ;
Wallace, Robert M. .
NANO LETTERS, 2016, 16 (09) :5437-5443
[2]   Ag@MoS2 Core-Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2 [J].
Chen, Junze ;
Liu, Guigao ;
Zhu, Yue-zhou ;
Su, Min ;
Yin, Pengfei ;
Wu, Xue-jun ;
Lu, Qipeng ;
Tan, Chaoliang ;
Zhao, Meiting ;
Liu, Zhengqing ;
Yang, Weimin ;
Li, Hai ;
Nam, Gwang-Hyeon ;
Zhang, Liping ;
Chen, Zhenhua ;
Huang, Xiao ;
Radjenovic, Petar M. ;
Huang, Wei ;
Tian, Zhong-qun ;
Li, Jian-feng ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :7161-7167
[3]   3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Zhang, Mengxing ;
Tong, Yun ;
Zhong, Chengan ;
Zhang, Nan ;
Zhang, Lidong ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2017, 29 (30)
[4]   Atomic Insights into Robust Pt-PdO Interfacial Site-Boosted Hydrogen Generation [J].
Chen, Wenyao ;
Zheng, Weizhong ;
Cao, Junbo ;
Fu, Wenzhao ;
Qian, Gang ;
Chen, De ;
Zhou, Xinggui ;
Duan, Xuezhi .
ACS CATALYSIS, 2020, 10 (19) :11417-11429
[5]   Controlled synthesis of Mo-doped Ni3S2 nano-rods: an efficient and stable electro-catalyst for water splitting [J].
Cui, Zheng ;
Ge, Yuancai ;
Chu, Hang ;
Baines, Robert ;
Dong, Pei ;
Tang, Jianhua ;
Yang, Yang ;
Ajayan, Pulickel M. ;
Ye, Mingxin ;
Shen, Jianfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (04) :1595-1602
[6]   In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution [J].
Dionigi, Fabio ;
Zeng, Zhenhua ;
Sinev, Ilya ;
Merzdorf, Thomas ;
Deshpande, Siddharth ;
Lopez, Miguel Bernal ;
Kunze, Sebastian ;
Zegkinoglou, Ioannis ;
Sarodnik, Hannes ;
Fan, Dingxin ;
Bergmann, Arno ;
Drnec, Jakub ;
de Araujo, Jorge Ferreira ;
Gliech, Manuel ;
Teschner, Detre ;
Zhu, Jing ;
Li, Wei-Xue ;
Greeley, Jeffrey ;
Roldan Cuenya, Beatriz ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Ultrathinning Nickel Sulfide with Modulated Electron Density for Efficient Water Splitting [J].
Fei, Ben ;
Chen, Ziliang ;
Liu, Jiexian ;
Xu, Hongbin ;
Yan, Xiaoxiao ;
Qing, Huilin ;
Chen, Mao ;
Wu, Renbing .
ADVANCED ENERGY MATERIALS, 2020, 10 (41)
[8]   Distance synergy of single Ag atoms doped MoS2 for hydrogen evolution electrocatalysis [J].
Gao, Xiaoping ;
Zhou, Yanan ;
Cheng, Zhiwen ;
Tan, Yujia ;
Yuan, Tao ;
Shen, Zhemin .
APPLIED SURFACE SCIENCE, 2021, 547 (547)
[9]   Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting [J].
Geng, Bo ;
Yan, Feng ;
Liu, Lina ;
Zhu, Chunling ;
Li, Bei ;
Chen, Yujin .
CHEMICAL ENGINEERING JOURNAL, 2021, 406
[10]   Hollow Mo-doped CoP nanoarrays for efficient overall water splitting [J].
Guan, Cao ;
Xiao, Wen ;
Wu, Haijun ;
Liu, Ximeng ;
Zang, Wenjie ;
Zhang, Hong ;
Ding, Jun ;
Feng, Yuan Ping ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2018, 48 :73-80