Combined activities of hedgehog signaling inhibitors regulate pancreas development

被引:91
作者
Kawahira, H
Ma, NH
Tzanakakis, ES
McMahon, AP
Chuang, PT
Hebrok, M [1 ]
机构
[1] Univ Calif San Francisco, Ctr Diabet, Dept Med, San Francisco, CA 94143 USA
[2] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[3] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA
来源
DEVELOPMENT | 2003年 / 130卷 / 20期
关键词
pancreas; islets; hedgehog signaling; Hhip; patched;
D O I
10.1242/dev.00653
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hedgehog signaling is known to regulate tissue morphogenesis and cell differentiation in a dose-dependent manner. Loss of Indian hedgehog (Ihh) results in reduction in pancreas size, indicating a requirement for hedgehog signaling during pancreas development. By contrast, ectopic expression of sonic hedgehog (Shh) inhibits pancreatic marker expression and results in transformation of pancreatic mesenchyme into duodenal mesoderm. These observations suggest that hedgehog signaling activity has to be regulated tightly to ensure proper pancreas development. We have analyzed the function of two hedgehog inhibitors, Hhip and patched 1 (Ptch), during pancreas formation. Our results indicated that loss of Hhip results in increased hedgehog signaling within the pancreas anlage. Pancreas morphogenesis, islet formation and endocrine cell proliferation is impaired in Hhip mutant embryos. Additional loss of one Ptch allele in Hhip(-/-)Ptch(+/-) embryos further impairs pancreatic growth and endodermal cell differentiation. These results demonstrate combined requirements for Hhip and Ptch during pancreas development and point to a dose-dependent response to hedgehog signaling within pancreatic tissue. Reduction of Fgf10 expression in Hhip homozygous mutants suggests that at least some of the observed phenotypes result from hedgehog-mediated inhibition of Fgf signaling at early stages.
引用
收藏
页码:4871 / 4879
页数:9
相关论文
共 44 条
[1]   Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells [J].
Ahlgren, U ;
Pfaff, SL ;
Jessell, TM ;
Edlund, T ;
Edlund, H .
NATURE, 1997, 385 (6613) :257-260
[2]   β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes [J].
Ahlgren, U ;
Jonsson, J ;
Jonsson, L ;
Simu, K ;
Edlund, H .
GENES & DEVELOPMENT, 1998, 12 (12) :1763-1768
[3]   Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas [J].
Apelqvist, A ;
Ahlgren, U ;
Edlund, H .
CURRENT BIOLOGY, 1997, 7 (10) :801-804
[4]  
Aubin J, 2002, DEVELOPMENT, V129, P4075
[5]  
Bellusci S, 1997, DEVELOPMENT, V124, P4867
[6]  
Bhushan A, 2001, DEVELOPMENT, V128, P5109
[7]   HEDGEHOG AND BMP GENES ARE COEXPRESSED AT MANY DIVERSE SITES OF CELL-CELL INTERACTION IN THE MOUSE EMBRYO [J].
BITGOOD, MJ ;
MCMAHON, AP .
DEVELOPMENTAL BIOLOGY, 1995, 172 (01) :126-138
[8]   Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened [J].
Chen, JK ;
Taipale, J ;
Cooper, MK ;
Beachy, PA .
GENES & DEVELOPMENT, 2002, 16 (21) :2743-2748
[9]   Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function [J].
Chiang, C ;
Ying, LTT ;
Lee, E ;
Young, KE ;
Corden, JL ;
Westphal, H ;
Beachy, PA .
NATURE, 1996, 383 (6599) :407-413
[10]   Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein [J].
Chuang, PT ;
McMahon, AP .
NATURE, 1999, 397 (6720) :617-621