Multiscale design of three-dimensional nonlinear composites using an interface-enriched generalized finite element method

被引:5
|
作者
Brandyberry, David R. [1 ]
Najafi, Ahmad R. [2 ]
Geubelle, Philippe H. [1 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Champaign, IL 61820 USA
[2] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
analytic sensitivity; cohesive failure; composites; multiscale modeling; shape optimization; STRUCTURAL SHAPE OPTIMIZATION; TOPOLOGY OPTIMIZATION; HOMOGENIZATION; FAILURE; DEFORMATION; SCHEME; FEM;
D O I
10.1002/nme.6333
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A computational framework is developed to model and optimize the nonlinear multiscale response of three-dimensional particulate composites using an interface-enriched generalized finite element method. The material nonlinearities are associated with interfacial debonding of inclusions from a surrounding matrix which is modeled using C-1 continuous enrichment functions and a cohesive failure model. Analytic material and shape sensitivities of the homogenized constitutive response are derived and used to drive a nonlinear inverse homogenization problem using gradient-based optimization methods. Spherical and ellipsoidal particulate microstructures are designed to match a component of the homogenized stress-strain response to a desired constructed macroscopic stress-strain behavior.
引用
收藏
页码:2806 / 2825
页数:20
相关论文
共 50 条
  • [1] A NURBS-based interface-enriched generalized finite element scheme for the thermal analysis and design of microvascular composites
    Tan, Marcus H. Y.
    Safdari, Masoud
    Najafi, Ahmad R.
    Geubelle, Philippe H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1382 - 1400
  • [2] Enriched finite element method for three-dimensional viscoelastic interface crack problems
    Junhui Yang
    Yongjun Lei
    Junli Han
    Shangyang Meng
    Journal of Mechanical Science and Technology, 2016, 30 : 771 - 782
  • [3] Enriched finite element method for three-dimensional viscoelastic interface crack problems
    Yang, Junhui
    Lei, Yongjun
    Han, Junli
    Meng, Shangyang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (02) : 771 - 782
  • [4] GENERALIZED FINITE ELEMENT METHOD FOR NONLINEAR THREE-DIMENSIONAL ANALYSIS OF SOLIDS
    Baroncini Proenca, Sergio Persival
    Ruiz Torres, Ivan Francisco
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2008, 5 (01) : 37 - 62
  • [5] An interface-enriched generalized finite element method for level set-based topology optimization
    van den Boom, S. J.
    Zhang, J.
    van Keulen, F.
    Aragon, A. M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (01) : 1 - 20
  • [6] An interface-enriched generalized finite element method for level set-based topology optimization
    S. J. van den Boom
    J. Zhang
    F. van Keulen
    A. M. Aragón
    Structural and Multidisciplinary Optimization, 2021, 63 : 1 - 20
  • [7] On the stability and interpolating properties of the Hierarchical Interface-enriched Finite Element Method
    Aragon, Alejandro M.
    Liang, Bowen
    Ahmadian, Hossein
    Soghrati, Soheil
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362
  • [8] Correction to: An interface-enriched generalized finite element method for level set-based topology optimization
    S. J. van den Boom
    J. Zhang
    F. van Keulen
    A. M. Aragón
    Structural and Multidisciplinary Optimization, 2023, 66
  • [9] Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method
    Soghrati, Soheil
    Najafi, Ahmad R.
    Lin, Jie H.
    Hughes, Kevin M.
    White, Scott R.
    Sottos, Nancy R.
    Geubelle, Philippe H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 65 : 153 - 164
  • [10] An interface-enriched generalized finite element method for the analysis and topology optimization of 2-D electromagnetic problems
    van Bergen, Steven
    Norte, Richard A.
    Aragon, Alejandro M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421