Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM

被引:4
作者
Bespalov, Alex [1 ]
Praetorius, Dirk [2 ]
Ruggeri, Michele [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
adaptive methods; a posteriori error analysis; two-level error estimation; multilevel stochastic Galerkin method; finite element methods; parametric PDEs; APPROXIMATION;
D O I
10.1093/imanum/drab036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze an adaptive algorithm for the numerical solution of parametric elliptic partial differential equations in two-dimensional physical domains, with coefficients and right-hand-side functions depending on infinitely many (stochastic) parameters. The algorithm generates multilevel stochastic Galerkin approximations; these are represented in terms of a sparse generalized polynomial chaos expansion with coefficients residing in finite element spaces associated with different locally refined meshes. Adaptivity is driven by a two-level a posteriori error estimator and employs a Dorfler-type marking on the joint set of spatial and parametric error indicators. We show that, under an appropriate saturation assumption, the proposed adaptive strategy yields optimal convergence rates with respect to the overall dimension of the underlying multilevel approximation spaces.
引用
收藏
页码:2190 / 2213
页数:24
相关论文
共 50 条
  • [21] Convergence results on stochastic adaptive learning
    Funai, Naoki
    ECONOMIC THEORY, 2019, 68 (04) : 907 - 934
  • [22] A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: Beyond the affine case
    Bespalov, Alex
    Xu, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1084 - 1103
  • [23] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 415
  • [24] Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography
    Leinonen, Matti
    Hakula, Harri
    Hyvonen, Nuutti
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 269 : 181 - 200
  • [25] On stochastic accelerated gradient with convergence rate
    Zha, Xingxing
    Zhang, Yongquan
    Cheng, Yiyuan
    OPEN MATHEMATICS, 2022, 20 (01): : 1184 - 1194
  • [26] Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction
    Farcas, Ionut-Gabriel
    Sarbu, Paul Cristian
    Bungartz, Hans-Joachim
    Neckel, Tobias
    Uekermann, Benjamin
    SPARSE GRIDS AND APPLICATIONS - MIAMI 2016, 2018, 123 : 43 - 68
  • [27] Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates
    Buffa, Annalisa
    Giannelli, Carlotta
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (14) : 2781 - 2802
  • [28] Asymptotic Optimality and Rates of Convergence of Quantized Stationary Policies in Stochastic Control
    Saldi, Naci
    Linder, Tamas
    Yueksel, Serdar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (02) : 553 - 558
  • [29] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [30] OPTIMAL CONVERGENCE OF ADAPTIVE FEM FOR EIGENVALUE CLUSTERS IN MIXED FORM
    Boffi, Daniele
    Gallistl, Dietmar
    Gardini, Francesca
    Gastaldi, Lucia
    MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2213 - 2237