Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM

被引:4
|
作者
Bespalov, Alex [1 ]
Praetorius, Dirk [2 ]
Ruggeri, Michele [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
adaptive methods; a posteriori error analysis; two-level error estimation; multilevel stochastic Galerkin method; finite element methods; parametric PDEs; APPROXIMATION;
D O I
10.1093/imanum/drab036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze an adaptive algorithm for the numerical solution of parametric elliptic partial differential equations in two-dimensional physical domains, with coefficients and right-hand-side functions depending on infinitely many (stochastic) parameters. The algorithm generates multilevel stochastic Galerkin approximations; these are represented in terms of a sparse generalized polynomial chaos expansion with coefficients residing in finite element spaces associated with different locally refined meshes. Adaptivity is driven by a two-level a posteriori error estimator and employs a Dorfler-type marking on the joint set of spatial and parametric error indicators. We show that, under an appropriate saturation assumption, the proposed adaptive strategy yields optimal convergence rates with respect to the overall dimension of the underlying multilevel approximation spaces.
引用
收藏
页码:2190 / 2213
页数:24
相关论文
共 50 条
  • [1] CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM
    Bespalov, Alex
    Praetorius, Dirk
    Rocchi, Leonardo
    Ruggeri, Michele
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2359 - 2382
  • [2] An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality
    Bachmayr, Markus
    Voulis, Igor
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1955 - 1992
  • [3] Two-Level a Posteriori Error Estimation for Adaptive Multilevel Stochastic Galerkin Finite Element Method
    Bespalov, Alex
    Praetorius, Dirk
    Ruggeri, Michele
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03): : 1184 - 1216
  • [4] Adaptive stochastic Galerkin FEM
    Eigel, Martin
    Gittelson, Claude Jeffrey
    Schwab, Christoph
    Zander, Elmar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 : 247 - 269
  • [5] Adaptive stochastic Galerkin FEM with hierarchical tensor representations
    Eigel, Martin
    Pfeffer, Max
    Schneider, Reinhold
    NUMERISCHE MATHEMATIK, 2017, 136 (03) : 765 - 803
  • [6] Adaptive stochastic Galerkin FEM with hierarchical tensor representations
    Martin Eigel
    Max Pfeffer
    Reinhold Schneider
    Numerische Mathematik, 2017, 136 : 765 - 803
  • [7] Convergence and optimality of an adaptive modified weak Galerkin finite element method
    Xie, Yingying
    Cao, Shuhao
    Chen, Long
    Zhong, Liuqiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3847 - 3873
  • [8] Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
    Eigel, Martin
    Marschall, Manuel
    Pfeffer, Max
    Schneider, Reinhold
    NUMERISCHE MATHEMATIK, 2020, 145 (03) : 655 - 692
  • [9] QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD
    Bonito, Andrea
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 734 - 771
  • [10] EFFICIENT ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN APPROXIMATION USING IMPLICIT A POSTERIORI ERROR ESTIMATION
    Crowder, Adam J.
    Powell, Catherine E.
    Bespalov, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) : A1681 - A1705