The Friedrichs extension of the Aharonov-Bohm Hamiltonian on a disc

被引:9
作者
Brasche, JF
Melgaard, M
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] Gothenburg Univ, SE-41296 Gothenburg, Sweden
[3] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
关键词
D O I
10.1007/s00020-005-1352-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Aharonov-Bohm Hamiltonian considered on a disc has a four-parameter family of self-adjoint extensions. Among the infinitely many self-adjoint extensions, we determine to which parameters the Friedrichs extension H-F corresponds and its lowest eigenvalue is found. Moreover, we note that the diamagnetic inequality holds for H-F.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 34 条
[31]   Invariance of closed convex sets and domination criteria for semigroups [J].
Ouhabaz, EM .
POTENTIAL ANALYSIS, 1996, 5 (06) :611-625
[32]  
Rellich F., 1950, Math. Ann., V122, P343
[33]  
ROSENBERGER R, 1985, J LOND MATH SOC, V31, P501
[34]  
WEIDMANN J, 1987, LECT NOTES MATH, V1258, P1