Identification of potential microRNAs and their targets in Brassica rapa L.

被引:43
作者
Dhandapani, Vignesh [1 ]
Ramchiary, Nirala [1 ]
Paul, Parameswari [1 ]
Kim, Joonki [1 ]
Choi, Sun Hee [1 ]
Lee, Jeongyeo [2 ]
Hur, Yoonkang [2 ]
Lim, Yong Pyo [1 ]
机构
[1] Chungnam Natl Univ, Dept Hort, Mol Genet & Genom Lab, Taejon 305764, South Korea
[2] Chungnam Natl Univ, Dept Biol, Taejon 305764, South Korea
基金
新加坡国家研究基金会;
关键词
Brassicaceae; in silico; Small RNAs; MESSENGER-RNA TARGETS; ARABIDOPSIS-THALIANA; COMPUTATIONAL IDENTIFICATION; PLANT MICRORNAS; GENE-EXPRESSION; PHASE-CHANGE; PREDICTION; MIRNA; CLEAVAGE; GENOMES;
D O I
10.1007/s10059-011-2313-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are recently discovered, noncoding, small regulatory RNA molecules that negatively regulate gene expression. Although many miRNAs are identified and validated in many plant species, they remain largely unknown in Brassica rapa (AA 2n =, 20). B. rapa is an important Brassica crop with wide genetic and morphological diversity resulting in several subspecies that are largely grown for vegetables, oilseeds, and fodder crop production. In this study, we identified 186 miRNAs belonging to 55 families in B. rapa by using comparative genomics. The lengths of identified mature and pre-miRNAs ranged from 18 to 22 and 66 to 305 nucleotides, respectively. Comparison of 4 nucleotides revealed that uracil is the predominant base in the first position of B. rapa miRNA, suggesting that it plays an important role in miRNA-mediated gene regulation. Overall, adenine and guanine were predominant in mature miRNAs, while adenine and uracil were predominant in pre-miRNA sequences. One DNA sequence producing both sense and antisense mature miRNAs belonging to the BrMiR 399 family, which differs by 1 nucleotide at the, 20(th) position, was identified. In silico analyses, using previously established methods, predicted 66 miRNA target mRNAs for 33 miRNA families. The majority of the target genes were transcription factors that regulate plant growth and development, followed by a few target genes that are involved in fatty acid metabolism, glycolysis, biotic and abiotic stresses, and other cellular processes. Northern blot and qRT-PCR analyses of RNA samples prepared from different B. rapa tissues for 17 miRNA families revealed that miRNAs are differentially expressed both quantitatively and qualitatively in different tissues of B. rapa.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 83 条
[1]   Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana [J].
Alves-Junior, Leonardo ;
Niemeier, Sandra ;
Hauenschild, Arne ;
Rehmsmeier, Marc ;
Merkle, Thomas .
NUCLEIC ACIDS RESEARCH, 2009, 37 (12) :4010-4021
[2]   The regulation of genes and genomes by small RNAs [J].
Ambros, Victor ;
Chen, Xuemei .
DEVELOPMENT, 2007, 134 (09) :1635-1641
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development [J].
Bazzini, A. A. ;
Hopp, H. E. ;
Beachy, R. N. ;
Asurmendi, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (29) :12157-12162
[5]   MicroRNAs in the Drosophila bithorax complex [J].
Bender, Welcome .
GENES & DEVELOPMENT, 2008, 22 (01) :14-19
[6]   HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis [J].
Bollman, KM ;
Aukerman, MJ ;
Park, MY ;
Hunter, C ;
Berardini, TZ ;
Poethig, RS .
DEVELOPMENT, 2003, 130 (08) :1493-1504
[7]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[8]   Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
BIOINFORMATICS, 2004, 20 (17) :2911-2917
[9]   Identification and characterization of small RNAs from the phloem of Brassica napus [J].
Buhtz, Anja ;
Springer, Franziska ;
Chappell, Louise ;
Baulcombe, David C. ;
Kehr, Julia .
PLANT JOURNAL, 2008, 53 (05) :739-749
[10]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10