Pullback Attractors for Nonautonomous Degenerate Kirchhoff Equations with Strong Damping

被引:1
作者
Ma, Honglv [1 ]
Wang, Jing [1 ]
Xie, Jun [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Nanjing Xiaozhuang Univ, Coll Elect Engn, Nanjing 211171, Peoples R China
关键词
FINITE-DIMENSIONAL ATTRACTORS; WAVE-EQUATIONS; GLOBAL SOLVABILITY; EXISTENCE; DYNAMICS;
D O I
10.1155/2021/7575078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain the existence of pullback attractors for nonautonomous Kirchhoff equations with strong damping, which covers the case of possible generation of the stiffness coefficient. For this purpose, a necessary method via "the measure of noncompactness" is established.
引用
收藏
页数:11
相关论文
共 39 条
  • [1] [Anonymous], 1992, Studies in Mathematics and its Applications
  • [2] [Anonymous], 1883, VORLESUNGEN MECHANIK
  • [3] AROSIO A, 1984, NONLINEAR PARTIAL DI, V6, P1
  • [4] Bernstein S., 1940, Bull. Acad. Sci. URSS Ser. Math, V4, P17
  • [5] Pullback attractors for asymptotically compact non-autonomous dynamical systems
    Caraballo, T
    Lukaszewicz, G
    Real, J
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) : 484 - 498
  • [6] Caraballo T., 2004, Stoch. Dyn, V04, P405, DOI [10.1142/S0219493704001139, DOI 10.1142/S0219493704001139]
  • [7] Existence of pullback attractors for pullback asymptotically compact processes
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Langa, Jose A.
    Rivero, Felipe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1967 - 1976
  • [8] Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    Suarez, Antonio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) : 570 - 603
  • [9] Existence and exponential decay for a Kirchhoff-carrier model with viscosity
    Cavalcanti, MM
    Cavalcanti, VND
    Prates, JS
    Soriano, JA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (01) : 40 - 60
  • [10] Long-time dynamics of Kirchhoff wave models with strong nonlinear damping
    Chueshov, Igor
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1229 - 1262