Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning

被引:38
作者
Jany, B. R. [1 ]
Janas, A. [1 ]
Krok, F. [1 ]
机构
[1] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
SEM; EDX; machine learning; BSS; NMF; SOURCE SEPARATION; GROWTH; CHALLENGES; RESOLUTION; EELS; TOOL;
D O I
10.1021/acs.nanolett.7b01789
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantitative composition of metal alloy nanowires on InSb semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning method using non-negative matrix factorization from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal, and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional transmission electron microscopy EDX measurements of the nanostructures. This shows that simple and achievable SEM EDX measurements together with machine learning non-negative matrix factorization-based blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination. Our finding can make the chemical quantification at the nanoscale much faster and cost efficient for many systems.
引用
收藏
页码:6520 / 6525
页数:6
相关论文
共 30 条
[11]  
Goldstein JI., 2003, Scanning Electron Microscopy and X-Ray Microanalysis, DOI [DOI 10.1007/978-1-4615-0215-9, 10.1007/978-1-4615-0215-9, DOI 10.1007/978-1-4939-6676-9]
[12]   Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface [J].
Jany, B. R. ;
Gauquelin, N. ;
Willhammar, T. ;
Nikiel, M. ;
van den Bos, K. H. W. ;
Janas, A. ;
Szajna, K. ;
Verbeeck, J. ;
Van Aert, S. ;
Van Tendeloo, G. ;
Krok, F. .
SCIENTIFIC REPORTS, 2017, 7
[13]   A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB [J].
Jaumot, J ;
Gargallo, R ;
de Juan, A ;
Tauler, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 76 (01) :101-110
[14]   BLIND SEPARATION OF SOURCES .1. AN ADAPTIVE ALGORITHM BASED ON NEUROMIMETIC ARCHITECTURE [J].
JUTTEN, C ;
HERAULT, J .
SIGNAL PROCESSING, 1991, 24 (01) :1-10
[15]   Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images [J].
Keenan, MR ;
Kotula, PG .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (03) :203-212
[16]   Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth [J].
Kolasinski, Kurt W. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (3-4) :182-191
[17]   Challenges to Quantitative Multivariate Statistical Analysis of Atomic-Resolution X-Ray Spectral [J].
Kotula, Paul G. ;
Klenov, Dmitri O. ;
von Harrach, H. Sebastian .
MICROSCOPY AND MICROANALYSIS, 2012, 18 (04) :691-698
[18]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[19]   Dynamics of thermally induced assembly of Au nanoislands from a thin Au layer on Ge(001) [J].
Nikiel, M. ;
Jany, B. R. ;
Wrana, D. ;
Szajna, K. ;
Janas, A. ;
Kozubski, R. ;
Krok, F. .
CRYSTENGCOMM, 2016, 18 (30) :5674-5680
[20]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825