Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning

被引:38
作者
Jany, B. R. [1 ]
Janas, A. [1 ]
Krok, F. [1 ]
机构
[1] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
SEM; EDX; machine learning; BSS; NMF; SOURCE SEPARATION; GROWTH; CHALLENGES; RESOLUTION; EELS; TOOL;
D O I
10.1021/acs.nanolett.7b01789
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantitative composition of metal alloy nanowires on InSb semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning method using non-negative matrix factorization from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal, and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional transmission electron microscopy EDX measurements of the nanostructures. This shows that simple and achievable SEM EDX measurements together with machine learning non-negative matrix factorization-based blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination. Our finding can make the chemical quantification at the nanoscale much faster and cost efficient for many systems.
引用
收藏
页码:6520 / 6525
页数:6
相关论文
共 30 条
[1]   A survey of ohmic contacts to III-V compound semiconductors [J].
Baca, AG ;
Ren, F ;
Zolper, JC ;
Briggs, RD ;
Pearton, SJ .
THIN SOLID FILMS, 1997, 308 :599-606
[2]   Extended Red Emission and the evolution of carbonaceous nanograins in NGC 7023 [J].
Berne, O. ;
Joblin, C. ;
Rapacioli, M. ;
Thomas, J. ;
Cuillandre, J. -C. ;
Deville, Y. .
ASTRONOMY & ASTROPHYSICS, 2008, 479 (03) :L41-L44
[3]  
CHO S.-P., 2003, HYOMEN KAGAKU, V24, P111, DOI DOI 10.1380/jsssj.24.111
[4]  
de la Pena F., 2017, HYPERSPY HYPERSPY V1
[5]   A new understanding of au-assisted growth of III-V semiconductor nanowires [J].
Dick, KA ;
Deppert, K ;
Karlsson, LS ;
Wallenberg, LR ;
Samuelson, L ;
Seifert, W .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) :1603-1610
[6]   Spectral mixture analysis of EELS spectrum-images [J].
Dobigeon, Nicolas ;
Brun, Nathalie .
ULTRAMICROSCOPY, 2012, 120 :25-34
[7]   Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon [J].
Dolores-Calzadilla, V. ;
Romeira, B. ;
Pagliano, F. ;
Birindelli, S. ;
Higuera-Rodriguez, A. ;
van Veldhoven, P. J. ;
Smit, M. K. ;
Fiore, A. ;
Heiss, D. .
NATURE COMMUNICATIONS, 2017, 8
[8]   CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users [J].
Drouin, Dominique ;
Couture, Alexandre Real ;
Joly, Dany ;
Tastet, Xavier ;
Aimez, Vincent ;
Gauvin, Raynald .
SCANNING, 2007, 29 (03) :92-101
[9]   Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis [J].
Eggeman, Alexander S. ;
Krakow, Robert ;
Midgley, Paul A. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications [J].
Geum, Dae-Myeong ;
Park, Min-Su ;
Lim, Ju Young ;
Yang, Hyun-Duk ;
Song, Jin Dong ;
Kim, Chang Zoo ;
Yoon, Euijoon ;
Kim, SangHyeon ;
Choi, Won Jun .
SCIENTIFIC REPORTS, 2016, 6