A dual membrane composed of composite polymer membrane and glass fiber membrane for rechargeable lithium-oxygen batteries

被引:17
作者
Woo, Hyun-Sik [1 ]
Kim, Jae-Hong [1 ]
Moon, Yong-Bok [1 ]
Kim, Won Keun [2 ]
Ryu, Kyoung Han [2 ]
Kim, Dong-Won [1 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[2] Hyundai Motor Grp, Res & Dev Div, Uiwang Si 16082, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-oxygen battery; Dual membrane; Composite polymer membrane; Cycling stability; Lithium dendrite; LI-AIR BATTERY; POLY(VINYLIDENE FLUORIDE); LI-O-2; BATTERIES; ION BATTERIES; ELECTROLYTE; PERFORMANCE; CERAMICS; LIQUID; SYSTEM; SAFETY;
D O I
10.1016/j.memsci.2018.01.011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Development of the lithium ion-conducting membrane with high ionic conductivity and good interfacial stability is a major challenge for lithium-oxygen batteries with high energy density. Herein, we design the dual membrane composed of Li+ ion-conducting ceramic-based composite polymer membrane and glass fiber membrane. The optimized membrane exhibited a high ionic conductivity of 8.1 x 10(-4) S cm(-1) at ambient temperature and retained an electrolyte solution well in the membrane. The dual membrane also effectively suppressed the lithium dendrite growth and blocked superoxide anion radical attack toward polymer in the composite polymer membrane. The lithium-oxygen cell employing dual membrane exhibited improved cycle life (> 70 cycles) at a constant current density of 0.1 mA cm(-2), which was much better than the cell with either a composite polymer membrane alone or a glass fiber membrane alone.
引用
收藏
页码:340 / 347
页数:8
相关论文
共 35 条
  • [1] Crystallinity and morphology of PVdF-HFP-based gel electrolytes
    Abbrent, S
    Plestil, J
    Hlavata, D
    Lindgren, J
    Tegenfeldt, J
    Wendsjö, Å
    [J]. POLYMER, 2001, 42 (04) : 1407 - 1416
  • [2] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [3] Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge
    Adams, Brian D.
    Radtke, Claudio
    Black, Robert
    Trudeau, Michel L.
    Zaghib, Karim
    Nazar, Linda F.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1772 - 1778
  • [4] Understanding the Chemical Stability of Polymers for Lithium-Air Batteries
    Amanchukwu, Chibueze V.
    Harding, Jonathon R.
    Shao-Horn, Yang
    Hammond, Paula T.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (02) : 550 - 561
  • [5] Non-Aqueous and Hybrid Li-O2 Batteries
    Black, Robert
    Adams, Brian
    Nazar, L. F.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 801 - 815
  • [6] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
  • [7] Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid
    Cecchetto, Laura
    Salomon, Mark
    Scrosati, Bruno
    Croce, Fausto
    [J]. JOURNAL OF POWER SOURCES, 2012, 213 : 233 - 238
  • [8] XPS and ionic conductivity studies on Li2O-Al2O3(TiO2 or GeO2)-P2O5 glass-ceramics
    Chowdari, BVR
    Rao, GVS
    Lee, GYH
    [J]. SOLID STATE IONICS, 2000, 136 : 1067 - 1075
  • [9] Optimal control of peridinin excited-state dynamics
    Dietzek, Benjamin
    Chabera, Pavel
    Hanf, Robert
    Tschierlei, Stefanie
    Popp, Juergen
    Pascher, Torbjorn
    Yartsev, Arkady
    Polivka, Tomas
    [J]. CHEMICAL PHYSICS, 2010, 373 (1-2) : 129 - 136
  • [10] In pursuit of catalytic cathodes for lithium-oxygen batteries
    Eftekhari, Ali
    Ramanujam, Balaji
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (17) : 7710 - 7731