Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal-Organic Coordination Networks at Surfaces: Modeling Non-Heme Iron Enzymes

被引:62
|
作者
Fabris, Stefano [1 ,2 ]
Stepanow, Sebastian [3 ]
Lin, Nian [3 ,4 ]
Gambardella, Pietro [5 ]
Dmitriev, Alexandre [3 ]
Honolka, Jan [3 ]
Baroni, Stefano [1 ,2 ]
Kern, Klaus [3 ,6 ]
机构
[1] Sincrotrone Trieste, Ist Off Mat, Theoryp Elettra Grp, CNR IOM DEMOCRITOS, I-34012 Trieste, Italy
[2] SISSA Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[5] ICREA & Catalan Inst Nanotechnol ICN CIN2, E-08193 Barcelona, Spain
[6] Ecole Polytech Fed Lausanne, Inst Phys Mat Condensee, CH-1015 Lausanne, Switzerland
关键词
Heterogeneous catalysis; synthetic enzymes; oxygen activation; STM; DFT; SOLUBLE METHANE MONOOXYGENASE; X-RAY-ABSORPTION; RIBONUCLEOTIDE REDUCTASE; DIOXYGEN ACTIVATION; MOLECULAR CATALYSTS; CRYSTAL-STRUCTURES; OXIDATION; FE; HYDROXYLASE; SITES;
D O I
10.1021/nl2031713
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high chemical reactivity of unsaturated metal sites is a key factor for the development of novel devices with applications in sensor engineering and catalysis. It is also central in the research for sustainable energy concepts, e.g., the efficient production and conversion of chemical fuels. Here, we study the process of oxygen dissociation by a surface-supported metal-organic network that displays close structural and functional analogies with the cofactors of non-heme enzymes. We synthesize a two-dimensional array of chemically active di-iron sites on a Cu(001) surface where molecular oxygen readily dissociates at room temperature. We provide an atomic-level structural and electronic characterization before and after reaction by combining scanning tunneling microscopy, X-ray absorption spectroscopy, and density functional theory. The latter identifies a novel mechanism for O-2 dissociation controlled by the cooperative catalytic action of two Fe2+ ions. The high structural flexibility of the organic ligands, the mobility of the metal centers, and the hydrogen bonding formation are shown to be essential for the functionality of these active centers allowing to mimick biologically relevant reactions in a confined environment.
引用
收藏
页码:5414 / 5420
页数:7
相关论文
共 3 条