Is radiomic MRI a feasible alternative to OncotypeDX® recurrence score testing? A systematic review and meta-analysis

被引:8
作者
Davey, M. G. [1 ]
Davey, M. S. [1 ]
Ryan, E. J. [1 ]
Boland, M. R. [1 ]
McAnena, P. F. [1 ]
Lowery, A. J. [1 ]
Kerin, M. J. [1 ]
机构
[1] Natl Univ Ireland, Lambe Inst Translat Res, Dept Surg, Galway, Ireland
关键词
BREAST-CANCER; DX; GUIDE; MANAGEMENT; DECISIONS; THERAPY; WOMEN;
D O I
10.1093/bjsopen/zrab081
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background: OncotypeDX (R) recurrence score (RS) aids therapeutic decision-making in oestrogen-receptor-positive (ER+) breast cancer. Radiomics is an evolving field that aims to examine the relationship between radiological features and the underlying genomic landscape of disease processes. The aim of this study was to perform a systematic review of current evidence evaluating the comparability of radiomics and RS. Methods: A systematic review was performed as per PRISMA guidelines. Studies comparing radiomic MRI tumour analyses and RS were identified. Sensitivity, specificity and area under curve (AUC) delineating low risk (RS less than 18) versus intermediate-high risk (equal to or greater than 18) and low-intermediate risk (RS less than 30) and high risk (RS greater than 30) were recorded. Log rate ratios (lnRR) and standard error were determined from AUC and 95 per cent confidence intervals. Results: Nine studies including 1216 patients met inclusion criteria; the mean age at diagnosis was 52.9 years. Mean RS was 16 (range 0-75); 401 patients with RS less than 18, 287 patients with RS 18-30 and 100 patients with RS greater than 30. Radiomic analysis and RS were comparable for differentiating RS less than 18 versus RS 18 or greater (RR 0.93 (95 per cent c.i. 0.85 to 1.01); P = 0.010, heterogeneity (I-2) = 0%) as well as RS less than 30 versus RS 30 or greater (RR 0.76 (95 per cent c.i. 0.70 to 0.83); P< 0.001, I-2 = 0%). MRI sensitivity and specificity for RS less than 18 versus 18 or greater was 0.89 (95 per cent c.i. 0.85 to 0.93) and 0.72 (95 per cent c.i. 0.66 to 0.78) respectively, and 0.79 (95 per cent c.i. 0.72 to 0.86) and 0.74 (95 per cent c.i. 0.68 to 0.80) for RS less than 30 versus 30 or greater. Conclusion: Radiomic tumour analysis is comparable to RS in differentiating patients into clinically relevant subgroups. For patients requiring MRI, radiomics may complement and enhance RS for prognostication and therapeutic decision making in ERthorn breast cancer.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles [J].
Ashraf, Ahmed Bilal ;
Daye, Dania ;
Gavenonis, Sara ;
Mies, Carolyn ;
Feldman, Michael ;
Rosen, Mark ;
Kontos, Despina .
RADIOLOGY, 2014, 272 (02) :374-384
[2]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[3]   Results of PONDx, a prospective multicenter study of the Oncotype DX® breast cancer assay: Real-life utilization and decision impact in French clinical practice [J].
Curtit, Elsa ;
Vannetzel, Jean-Michel ;
Darmon, Jean-Claude ;
Roche, Sophie ;
Bourgeois, Hugues ;
Dewas, Sylvain ;
Catala, Stephanie ;
Mereb, Emile ;
Fanget, Charlotte Furtos ;
Genet, Dominique ;
Forest, Anne-Marie ;
Bernier, Celine ;
Pivot, Xavier .
BREAST, 2019, 44 :39-45
[4]   Disease recurrence and oncological outcome of patients treated surgically with curative intent for estrogen receptor positive, lymph node negative breast cancer [J].
Davey, M. G. ;
Ryan, E. J. ;
McAnena, P. F. ;
Boland, M. R. ;
Barry, M. K. ;
Sweeney, K. J. ;
Malone, C. M. ;
McLaughlin, R. J. ;
Lowery, A. J. ;
Kerin, M. J. .
SURGICAL ONCOLOGY-OXFORD, 2021, 37
[5]   Clinicopathological correlates, oncological impact, and validation of Oncotype DX™ in a European Tertiary Referral Centre [J].
Davey, Matthew G. ;
Ryan, Eanna J. ;
Abd Elwahab, Sami ;
Elliott, Jessie A. ;
McAnena, Peter F. ;
Sweeney, Karl J. ;
Malone, Carmel M. ;
McLaughlin, Ray ;
Barry, Michael K. ;
Keane, Maccon M. ;
Lowery, Aoife J. ;
Kerin, Michael J. .
BREAST JOURNAL, 2021, 27 (06) :521-528
[6]   Cost analysis of using Magee scores as a surrogate of Oncotype DX for adjuvant treatment decisions in women with early breast cancer [J].
de Lima, Mariana A. G. ;
Clemons, Mark ;
Van Katwyk, Sasha ;
Stober, Carol ;
Robertson, Susan J. ;
Vandermeer, Lisa ;
Fergusson, Dean ;
Thavorn, Kednapa .
JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2020, 26 (03) :889-892
[7]   Treatment of lymph-node-negative, oestrogen-recept-postive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials [J].
Fisher, B ;
Jeong, JH ;
Bryant, J ;
Anderson, S ;
Dignam, J ;
Fisher, ER ;
Wolmark, N .
LANCET, 2004, 364 (9437) :858-868
[8]   Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 [J].
Goldhirsch, A. ;
Winer, E. P. ;
Coates, A. S. ;
Gelber, R. D. ;
Piccart-Gebhart, M. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2013, 24 (09) :2206-2223
[9]   NCCN Guidelines® Insights Breast Cancer, Version 1.2017 Featured Updates to the NCCN Guidelines [J].
Gradishar, William J. ;
Anderson, Benjamin O. ;
Balassanian, Ron ;
Blair, Sarah L. ;
Burstein, Harold J. ;
Cyr, Amy ;
Elias, Anthony D. ;
Farrar, William B. ;
Forero, Andres ;
Giordano, Sharon Hermes ;
Goetz, Matthew P. ;
Goldstein, Lori J. ;
Isakoff, Steven J. ;
Lyons, Janice ;
Marcom, P. Kelly ;
Mayer, Ingrid A. ;
McCormick, Beryl ;
Moran, Meena S. ;
O'Regan, Ruth M. ;
Patel, Sameer A. ;
Pierce, Lori J. ;
Reed, Elizabeth C. ;
Salerno, Kilian E. ;
Schwartzberg, Lee S. ;
Sitapati, Amy ;
Smith, Karen Lisa ;
Smith, Mary Lou ;
Soliman, Hatem ;
Somlo, George ;
Telli, Melinda ;
Ward, John H. ;
Shead, Dorothy A. ;
Kumar, Rashmi .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (04) :433-+
[10]   Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score [J].
Ha, Richard ;
Chang, Peter ;
Mutasa, Simukayi ;
Karcich, Jenika ;
Goodman, Sarah ;
Blum, Elyse ;
Kalinsky, Kevin ;
Liu, Michael Z. ;
Jambawalikar, Sachin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (02) :518-524