Exactly solvable connections in metric-affine gravity

被引:36
作者
Iosifidis, Damianos [1 ]
机构
[1] Aristotle Univ Thessaloniki, Inst Theoret Phys, Dept Phys, Thessaloniki 54124, Greece
关键词
modified gravity; torsion; non-metricity; non-Riemannian geometry; affine-connection; metric-affine gravity; Palatini gravity; GENERAL-RELATIVITY; EQUATIONS;
D O I
10.1088/1361-6382/ab0be2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article presents a systematic way to solve for the affine connection in metric-affine geometry. We start by adding to the Einstein-Hilbert action, a general action that is linear in the connection and its partial derivatives and respects projective invariance. We then generalize the result for metric-affine f (R) theories. Finally, we generalize even further and add an action (to the Einstein-Hilbert) that has an arbitrary dependence on the connection and its partial derivatives. We wrap up our results as three consecutive theorems. We then apply our theorems to some simple examples in order to illustrate how the procedure works and also discuss the cases of dynamical/non-dynamical connections.
引用
收藏
页数:46
相关论文
共 29 条
[1]  
Aldrovandi R., 2012, TELEPARALLEL GRAVITY, V173
[2]  
Aldrovandi R., 2010, INTRO TELEPARALLEL G
[3]   Accelerated cosmological models in first-order nonlinear gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (04)
[4]  
[Anonymous], 1922, J. Math. Pures Appl. I
[5]   Born-Infeld inspired modifications of gravity [J].
Beltran Jimenez, Jose ;
Heisenberg, Lavinia ;
Olmo, Gonzalo J. ;
Rubiera-Garcia, Diego .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 727 :1-129
[6]   GRAVITY THEORIES WITH ASYMPTOTICALLY FLAT INSTANTONS [J].
DAURIA, R ;
REGGE, T .
NUCLEAR PHYSICS B, 1982, 195 (02) :308-324
[7]   THE UNIVERSALITY OF VACUUM EINSTEIN EQUATIONS WITH COSMOLOGICAL CONSTANT [J].
FERRARIS, M ;
FRANCAVIGLIA, M ;
VOLOVICH, I .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (06) :1505-1517
[8]  
HEHL FW, 1976, Z NATURFORSCH A, V31, P823
[9]   METRIC-AFFINE VARIATIONAL-PRINCIPLES IN GENERAL-RELATIVITY .2. RELAXATION OF THE RIEMANNIAN CONSTRAINT [J].
HEHL, FW ;
LORD, EA ;
SMALLEY, LL .
GENERAL RELATIVITY AND GRAVITATION, 1981, 13 (11) :1037-1056
[10]   METRIC-AFFINE GAUGE-THEORY OF GRAVITY - FIELD-EQUATIONS, NOETHER IDENTITIES, WORLD SPINORS, AND BREAKING OF DILATION INVARIANCE [J].
HEHL, FW ;
MCCREA, JD ;
MIELKE, EW ;
NEEMAN, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (1-2) :1-171