Predicting conversion to wet age-related macular degeneration using deep learning

被引:207
作者
Yim, Jason [1 ]
Chopra, Reena [1 ,2 ,3 ]
Spitz, Terry [4 ]
Winkens, Jim [4 ]
Obika, Annette [1 ]
Kelly, Christopher [4 ]
Askham, Harry [4 ]
Lukic, Marko [2 ,3 ]
Huemer, Josef [2 ,3 ]
Fasler, Katrin [2 ,3 ]
Moraes, Gabriella [2 ,3 ]
Meyer, Clemens [1 ]
Wilson, Marc [4 ]
Dixon, Jonathan [4 ]
Hughes, Cian [4 ]
Rees, Geraint [5 ]
Khaw, Peng T. [2 ,3 ]
Karthikesalingam, Alan [4 ]
King, Dominic [4 ]
Hassabis, Demis [1 ]
Suleyman, Mustafa [1 ]
Back, Trevor [1 ]
Ledsam, Joseph R. [1 ]
Keane, Pearse A. [2 ,3 ]
De Fauw, Jeffrey [1 ]
机构
[1] DeepMind, London, England
[2] Moorfields Eye Hosp, NIHR Biomed Res Ctr, London, England
[3] UCL Inst Ophthalmol, London, England
[4] Google Hlth, London, England
[5] UCL, London, England
基金
英国医学研究理事会;
关键词
RETINAL-PIGMENT EPITHELIUM; CHOROIDAL NEOVASCULARIZATION; DRUSEN VOLUME; RETICULAR PSEUDODRUSEN; NATURAL-HISTORY; VISUAL OUTCOMES; PROGRESSION; PREVALENCE; OCT; DELAY;
D O I
10.1038/s41591-020-0867-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In individuals diagnosed with age-related macular degeneration in one eye, a deep learning model can predict progression to the 'wet', sight-threatening form of the disease in the second eye within a 6-month time frame. Progression to exudative 'wet' age-related macular degeneration (exAMD) is a major cause of visual deterioration. In patients diagnosed with exAMD in one eye, we introduce an artificial intelligence (AI) system to predict progression to exAMD in the second eye. By combining models based on three-dimensional (3D) optical coherence tomography images and corresponding automatic tissue maps, our system predicts conversion to exAMD within a clinically actionable 6-month time window, achieving a per-volumetric-scan sensitivity of 80% at 55% specificity, and 34% sensitivity at 90% specificity. This level of performance corresponds to true positives in 78% and 41% of individual eyes, and false positives in 56% and 17% of individual eyes at the high sensitivity and high specificity points, respectively. Moreover, we show that automatic tissue segmentation can identify anatomical changes before conversion and high-risk subgroups. This AI system overcomes substantial interobserver variability in expert predictions, performing better than five out of six experts, and demonstrates the potential of using AI to predict disease progression.
引用
收藏
页码:892 / +
页数:25
相关论文
共 64 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   Drusen Volume as a Predictor of Disease Progression in Patients With Late Age-Related Macular Degeneration in the Fellow Eye [J].
Abdelfattah, Nizar Saleh ;
Zhang, Hongyang ;
Boyer, David S. ;
Rosenfeld, Philip J. ;
Feuer, William J. ;
Gregori, Giovanni ;
Sadda, SriniVas R. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (04) :1839-1846
[3]   Action on AMD. Optimising patient management: act now to ensure current and continual delivery of best possible patient care [J].
Amoaku, W. ;
Blakeney, S. ;
Freeman, M. ;
Gale, R. ;
Johnston, R. ;
Kelly, S. P. ;
McLaughlan, B. ;
Sahu, D. ;
Varma, D. .
EYE, 2012, 26 :S2-S21
[4]  
Anand R, 2000, OPHTHALMOLOGY, V107, P2224
[5]  
[Anonymous], 2001, AM J OPHTHALMOL, V132, P668
[6]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[7]  
BABENKO B, 2019, PREDICTING PROGRESSI
[8]   Clinical Characteristics, Choroidal Neovascularization, and Predictors of Visual Outcomes in Acquired Vitelliform Lesions [J].
Balaratnasingam, Chandrakumar ;
Hoang, Quan V. ;
Inoue, Maiko ;
Curcio, Christine A. ;
Dolz-Marco, Rosa ;
Yannuzzi, Nicolas A. ;
Dhrami-Gavazi, Elona ;
Yannuzzi, Lawrence A. ;
Freund, K. Bailey .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2016, 172 :28-38
[9]   Associations Between Retinal Pigment Epithelium and Drusen Volume Changes During the Lifecycle of Large Drusenoid Pigment Epithelial Detachments [J].
Balaratnasingam, Chandrakumar ;
Yannuzzi, Lawrence A. ;
Curcio, Christine A. ;
Morgan, William H. ;
Querques, Giuseppe ;
Capuano, Vittorio ;
Souied, Eric ;
Jung, Jesse ;
Freund, K. Bailey .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5479-5489
[10]  
BANERJEE I, 2019, DEEP LEARNING APPROA