Counting unicellular maps on non-orientable surfaces

被引:10
作者
Bernardi, Olivier [1 ]
Chapuy, Guillaume [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词
One-face map; One-vertex triangulation; Bijection; Harer-Zagier formula; BIJECTION;
D O I
10.1016/j.aam.2010.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we present a bijective link between unicellular maps on a non-orientable surface and unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting formulas for non-orientable unicellular maps of fixed topology. In particular, we give exact formulas for the precubic case (all vertices of degree 1 or 3), and asymptotic formulas for the general case, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained by the second author for the orientable case, but significant novelties are introduced: in particular we construct an involution which, in some sense, "averages" the effects of non-orientability. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 12 条
[1]  
Bernardi O., ARXIV09011608
[2]  
Chapuy G., DISCR MATH THEOR COM
[3]   A BIJECTION FOR ROOTED MAPS ON ORIENTABLE SURFACES [J].
Chapuy, Guillaume ;
Marcus, Michel ;
Schaeffer, Gilles .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1587-1611
[4]   The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees [J].
Chapuy, Guillaume .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (3-4) :415-447
[5]   Maps in locally orientable surfaces, the double coset algebra, and zonal polynomials [J].
Goulden, IP ;
Jackson, DM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (03) :569-584
[6]   A direct bijection for the Harer-Zagier formula [J].
Goulden, IP ;
Nica, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (02) :224-238
[7]   THE EULER CHARACTERISTIC OF THE MODULI SPACE OF CURVES [J].
HARER, J ;
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1986, 85 (03) :457-485
[8]   A combinatorial proof of the Harer-Zagier formula [J].
Lass, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03) :155-160
[9]   A recursion formula for the moments of the Gaussian orthogonal ensemble [J].
Ledoux, M. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :754-769
[10]  
Mohar B., 2001, JH STUD MATH SCI, DOI 10.56021/9780801866890