Large time behavior of the heat kernel

被引:25
作者
Pinchover, Y [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
heat kernel; ground state; principal eigenvalue; recurrence;
D O I
10.1016/S0022-1236(03)00110-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the large time behavior of the (minimal) beat kernel k(P)(M) (x, y, t) of a general time-independent parabolic operator Lu = u(t) + P(x, partial derivative(x))u which is defined on a. noncompact manifold M. More precisely, we prove that lim(t-->infinity) e(lambda0t) k(P)(M)(x, y, t) always exists. Here lambda(0) is the generalized principal eigenvalue of the operator P in M. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 209
页数:19
相关论文
共 32 条
[1]  
Anker JP, 2002, REV MAT IBEROAM, V18, P41
[2]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[3]  
[Anonymous], 1972, POTENTIAL THEORY HAR
[4]  
[Anonymous], 1998, HEAT KERNELS SPECTRA
[5]  
ARENDT W, 1993, DIFFERENTIAL INTEGRA, V6, P1009
[6]   On minimal parabolic functions and time-homogeneous parabolic h-transforms [J].
Burdzy, K ;
Salisbury, TS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (09) :3499-3531
[7]   MODIFIED ISOPERIMETRIC CONSTANTS, AND LARGE TIME HEAT DIFFUSION IN RIEMANNIAN-MANIFOLDS [J].
CHAVEL, I ;
FELDMAN, EA .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (03) :473-499
[8]   LARGE TIME BEHAVIOR OF THE HEAT KERNEL - THE PARABOLIC LAMBDA-POTENTIAL ALTERNATIVE [J].
CHAVEL, I ;
KARP, L .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (04) :541-556
[9]  
Chavel I., 2001, Cambridge Tracts in Math, V145
[10]  
COLLET P, ASYMPTOTIC HEAT KERN