ON CERTAIN CLASSES OF MEROMORPHICALLY p-VALENT CONVEX FUNCTIONS

被引:0
作者
Aouf, M. K. [1 ]
Shamandy, A. [1 ]
Mostafa, A. O. [1 ]
Madian, S. M. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2011年 / 40卷 / 03期
关键词
p-Valent; Hadamard product; Meromorphic; Convex; Jack's lemma; GENERALIZED HYPERGEOMETRIC FUNCTION; MULTIVALENT-FUNCTIONS; ORDER ALPHA; SUBCLASSES; STARLIKE; CRITERIA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Making use of a differential operator, which is defined here by means of the Hadamard product (or convolution), we introduce the class Sigma(n)(p)(alpha(1), beta(1); lambda) of meromorphically p-valent convex functions. The main object of this paper is to investigate various important properties and characteristics for this class. Further, a property preserving integrals is considered.
引用
收藏
页码:359 / 365
页数:7
相关论文
共 23 条
[1]   Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function [J].
Aouf, M. K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :494-509
[2]   On certain classes of meromorphically multivalent functions associated with the generalized hypergeometric function [J].
Aouf, M. K. ;
Yassen, M. F. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (03) :449-463
[3]  
Aouf M. K., 1993, TSUKUBA J MATH, V17, P481, DOI DOI 10.21099/tkbjm/1496162274
[5]  
AOUF MK, 1997, MATH SCI RES HOT LIN, V1, P7
[6]  
Bajpai S.K., 1977, REV ROUMAINE MATH PU, V22, P295
[7]  
Cho N. E., 1992, CURRENT TOPICS ANAL, P86
[8]   CERTAIN DIFFERENTIAL-OPERATORS FOR MEROMORPHICALLY P-VALENT CONVEX-FUNCTIONS [J].
CHO, NE ;
OWA, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1992, 68 (01) :28-31
[9]   Certain subclasses of analytic functions associated with the generalized hypergeometric function [J].
Dziok, J ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (01) :7-18
[10]   Classes of analytic functions associated with the generalized hypergeometric function [J].
Dziok, J ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 103 (01) :1-13