COPULA GAUSSIAN GRAPHICAL MODELS AND THEIR APPLICATION TO MODELING FUNCTIONAL DISABILITY DATA

被引:108
作者
Dobra, Adrian [1 ,2 ]
Lenkoski, Alex [3 ]
机构
[1] Univ Washington, Dept Stat, Dept Biobehav Nursing & Hlth Syst, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Stat & Social Sci, Seattle, WA 98195 USA
[3] Heidelberg Univ, Dept Appl Math, D-69120 Heidelberg, Germany
关键词
Bayesian inference; Gaussian graphical models; latent variable model; Markov chain Monte Carlo; DECOMPOSABLE GRAPHS; BAYESIAN-INFERENCE; DISTRIBUTIONS; COMPUTATION; POPULATION; PREVALENCE; LIKELIHOOD;
D O I
10.1214/10-AOAS397
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models (CGGMs) and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompasses many studies from social science and economics. We illustrate the use of the copula Gaussian graphical models in the analysis of a 16-dimensional functional disability contingency table.
引用
收藏
页码:969 / 993
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 1999, Mathematical Methods of Statistics
[2]   Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models [J].
Atay-Kayis, A ;
Massam, H .
BIOMETRIKA, 2005, 92 (02) :317-335
[3]   CONJUGATE PRIORS FOR EXPONENTIAL FAMILIES [J].
DIACONIS, P ;
YLVISAKER, D .
ANNALS OF STATISTICS, 1979, 7 (02) :269-281
[4]  
DOBRA A, 2010, COPULA GAUSSIAN GR S, DOI DOI 10.1214/10-AOAS397SUPP
[5]  
Dobra A., 2009, STAT METHODOL, DOI [DOI 10.1016/j.stamet.2009.04.002, DOI 10.1016/J.STAMET.2009.04.002]
[6]  
Dobra A., 2003, P C NEW FRONTIERS ST, P93
[7]   Bayesian dynamic modeling of latent trait distributions [J].
Dunson, David B. .
BIOSTATISTICS, 2006, 7 (04) :551-568
[8]   Nonparametric Bayes Modeling of Multivariate Categorical Data [J].
Dunson, David B. ;
Xing, Chuanhua .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1042-1051
[9]   DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA [J].
Erosheva, Elena A. ;
Fienberg, Stephen E. ;
Joutard, Cyrille .
ANNALS OF APPLIED STATISTICS, 2007, 1 (02) :502-537
[10]  
Fienberg StephenE., 2010, Algebraic and geometric methods in statistics, P27