A geometric framework for nonconvex optimization duality using augmented lagrangian functions

被引:21
作者
Nedich, Angelia [1 ]
Ozdaglar, Asuman [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] Harvard Univ, MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
augmented Lagrangian functions; duality; penalty;
D O I
10.1007/s10898-006-9122-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems. Using the primal function of a constrained optimization problem, we apply our results both in the analysis of duality schemes constructed using augmented Lagrangian functions, and in establishing necessary and sufficient conditions for the convergence of penalty methods.
引用
收藏
页码:545 / 573
页数:29
相关论文
共 18 条
[1]  
[Anonymous], 2004, LINEAR NONLINEAR PRO
[2]   Asymptotic analysis for penalty and barrier methods in convex and linear programming [J].
Auslender, A ;
Cominetti, R ;
Haddou, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (01) :43-62
[3]  
AUSLENDER A, 2003, SPRINGER MG MATH, pR7
[4]  
Bertsekas D, 2003, Convex Analysis and Optimization, V1
[5]  
Bertsekas D.P., 1999, Nonlinear Programming
[6]  
BERTSEKAS DP, 2002, LIDSP2536
[7]  
BONNANS JF, 2000, PERTURBATION ANAOL O
[8]  
Borwein J. M., 2000, CMS BOOKS MATH
[9]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA
[10]  
Hiriart-Urruty J-B., 1993, CONVEX ANAL MINIMIZA