The tree property at successors of singular cardinals

被引:49
作者
Magidor, M [1 ]
Shelah, S [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1007/s001530050052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming some large cardinals, a model of ZFC is obtained in which aleph(omega+1) carries no Aronszajn trees. It is also shown that if lambda is a singular limit of strongly compact cardinals, then lambda(+) carries no Aronszajn trees.
引用
收藏
页码:385 / 404
页数:20
相关论文
共 8 条
[1]  
[Anonymous], P S PURE MATH
[2]  
[Anonymous], SURVEYS SET THEORY
[3]  
JECH T, 1978, SET THEORY
[4]  
Jensen R. B., 1972, Ann. Math. Logic, V4, P229
[5]   CHANG CONJECTURE FOR CHI-OMEGA [J].
LEVINSKI, JP ;
MAGIDOR, M ;
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 69 (02) :161-172
[6]   MEASURABLE CARDINALS AND CONTINUUM HYPOTHESIS [J].
LEVY, A ;
SOLOVAY, RM .
ISRAEL JOURNAL OF MATHEMATICS, 1967, 5 (04) :234-&
[7]  
MAGIDOR M, 1983, J SYMBOLIC LOGIC, V47, P755
[8]  
Solovay Robert M., 1978, Ann. Math. Log., V13, P73, DOI [10.1016/0003-4843(78)90031-1, DOI 10.1016/0003-4843(78)90031-1]