Strongly interacting trapped one-dimensional quantum gases: Exact solution

被引:23
作者
Minguzzi, A. [1 ]
Vignolo, P. [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, LPMMC, F-38000 Grenoble, France
[2] Univ Cote Azur, CNRS, InPhyNi, F-06560 Valbonne, France
来源
AVS QUANTUM SCIENCE | 2022年 / 4卷 / 02期
关键词
BLACK-HOLE; HAWKING RADIATION; ANALOG; MECHANICS; BARRIER; EIGENSTATE; SYSTEMS; LIGHT;
D O I
10.1116/5.0077423
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Understanding the effect of correlations in interacting many-body systems is one of the main challenges in quantum mechanics. While the general problem can only be addressed by approximate methods and numerical simulations, in some limiting cases, it is amenable to exact solutions. This Review collects the predictions coming from a family of exact solutions which allows us to obtain the many-body wavefunction of strongly correlated quantum fluids confined by a tight waveguide and subjected to any form of longitudinal confinement. It directly describes the experiments with trapped ultracold atoms where the strongly correlated regime in one dimension has been achieved. The exact solution applies to bosons, fermions, and mixtures. It allows us to obtain experimental observables such as the density profiles and momentum distribution at all momentum scales, beyond the Luttinger liquid approach. It also predicts the exact quantum dynamics at all the times, including the small oscillation regime yielding the collective modes of the system and the large quench regime where the system parameters are changed considerably. The solution can be extended to describe finite-temperature conditions, spin, and magnetization effects. The Review illustrates the idea of the solution, presents the key theoretical achievements, and the main experiments on strongly correlated one-dimensional quantum gases.
引用
收藏
页数:23
相关论文
共 61 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Light, the universe and everything-12 Herculean tasks for quantum cowboys and black diamond skiers [J].
Agarwal, Girish ;
Allen, Roland E. ;
Bezdekova, Iva ;
Boyd, Robert W. ;
Chen, Goong ;
Hanson, Ronald ;
Hawthorne, Dean L. ;
Hemmer, Philip ;
Kim, Moochan B. ;
Kocharovskaya, Olga ;
Lee, David M. ;
Lidstrom, Sebastian K. ;
Lidstrom, Suzy ;
Losert, Harald ;
Maier, Helmut ;
Neuberger, John W. ;
Padgett, Miles J. ;
Raizen, Mark ;
Rajendran, Surjeet ;
Rasel, Ernst ;
Schleich, Wolfgang P. ;
Scully, Marlan O. ;
Shchedrin, Gavriil ;
Shvets, Gennady ;
Sokolov, Alexei V. ;
Svidzinsky, Anatoly ;
Walsworth, Ronald L. ;
Weiss, Rainer ;
Wilczek, Frank ;
Willner, Alan E. ;
Yablonovitch, Eli ;
Zheludev, Nikolay .
JOURNAL OF MODERN OPTICS, 2018, 65 (11) :1261-1308
[3]   T3 Stern-Gerlach Matter-Wave Interferometer [J].
Amit, O. ;
Margalit, Y. ;
Dobkowski, O. ;
Zhou, Z. ;
Japha, Y. ;
Zimmermann, M. ;
Efremov, M. A. ;
Narducci, F. A. ;
Rase, E. M. ;
Schleich, W. P. ;
Folmani, R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (08)
[4]   DISSIPATIVE QUANTUM-SYSTEMS WITH A POTENTIAL BARRIER - GENERAL-THEORY AND THE PARABOLIC BARRIER [J].
ANKERHOLD, J ;
GRABERT, H ;
INGOLD, GL .
PHYSICAL REVIEW E, 1995, 51 (05) :4267-4281
[5]   WIGNERS FUNCTION AND TUNNELING [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1990, 199 (01) :123-140
[6]  
Barceló C, 2005, LIVING REV RELATIV, V8, DOI [10.12942/lrr-2005-12, 10.12942/lrr-2011-3]
[7]   QUANTUM-MECHANICS OF THE INVERTED OSCILLATOR POTENTIAL [J].
BARTON, G .
ANNALS OF PHYSICS, 1986, 166 (02) :322-363
[8]   Unruh acceleration radiation revisited [J].
Ben-Benjamin, J. S. ;
Scully, M. O. ;
Fulling, S. A. ;
Lee, D. M. ;
Page, D. N. ;
Svidzinsky, A. A. ;
Zubairy, M. S. ;
Duff, M. J. ;
Glauber, R. ;
Schleich, W. P. ;
Unruh, W. G. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (28)
[9]   Factorization method and new potentials from the inverted oscillator [J].
Bermudez, David ;
Fernandez C, David J. .
ANNALS OF PHYSICS, 2013, 333 :290-306
[10]  
Berry M. V., 1999, Supersymmetry and Trace Formulae, P355