Emergence of breathers in non-linear pulse compression

被引:2
作者
Chowdury, Amdad [1 ]
Gavara, Trivikramarao [1 ]
Chang, Wonkeun [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
non-linear Schrodinger equation; breathers; solitons; non-linear pulse-compression; DISPERSIVE DIELECTRIC FIBERS; MODULATION INSTABILITY; CHERENKOV RADIATION; OPTICAL PULSES; WAVE; TRANSMISSION; GENERATION; SOLITONS; WATER; BEAMS;
D O I
10.1088/2040-8986/ab9c73
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the universality of the emergence of Akhmediev breathers in soliton effect pulse compression dynamics by using explicit analytic solutions of breathers and solitons in the non-linear Schrodinger equation. We show that at maximum compression point, a higher-order soliton and a breather solution are equivalent with a nearly identical full-width at half maximum duration. From this, we demonstrate numerically how breathers that develop in the initial stage of continuous wave supercontinuum generation transform into an ensemble of solitons in the presence of system perturbation.
引用
收藏
页数:9
相关论文
共 46 条
[1]   CHERENKOV RADIATION EMITTED BY SOLITONS IN OPTICAL FIBERS [J].
AKHMEDIEV, N ;
KARLSSON, M .
PHYSICAL REVIEW A, 1995, 51 (03) :2602-2607
[2]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[3]  
Akhmediev N. N., 1988, Soviet Physics - JETP, V67, P89
[4]   Universal triangular spectra in parametrically-driven systems [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Dudley, John M. .
PHYSICS LETTERS A, 2011, 375 (03) :775-779
[5]   EXTREMELY HIGH DEGREE OF N-SOLITON PULSE-COMPRESSION IN AN OPTICAL FIBER [J].
AKHMEDIEV, NN ;
MITZKEVICH, NV .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (03) :849-857
[6]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[7]   Resonant radiation from Peregrine solitons [J].
Baronio, Fabio ;
Chen, Shihua ;
Trillo, Stefano .
OPTICS LETTERS, 2020, 45 (02) :427-430
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[10]   On asymptotic stability of solitary waves for nonlinear Schrodinger equations [J].
Buslaev, VS ;
Sulem, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :419-475