Multicomponent Copper-Zinc Alloy Layer Enabling Ultra-Stable Zinc Metal Anode of Aqueous Zn-ion Battery

被引:129
作者
Li, Boyu [1 ,2 ]
Yang, Ke [1 ,2 ]
Ma, Jiabin [1 ,2 ]
Shi, Peiran [1 ,2 ]
Chen, Likun [1 ,2 ]
Chen, Changmiao [1 ]
Hong, Xin [1 ]
Cheng, Xing [1 ,2 ]
Tang, Man-Chung [1 ]
He, Yan-Bing [1 ]
Kang, Feiyu [1 ,2 ]
机构
[1] Tsinghua Shenzhen Int Grad Sch, Inst Mat Res IMR, Shenzhen All Solid State Lithium Battery Electrol, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous Zn-Ion Batteries; Multicomponent Cu-Zn Alloy Layer; Surface Modification; COMPOSITE; CHEMISTRY; BEHAVIOR; LI;
D O I
10.1002/anie.202212587
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Constructing stable surface modification layer is an effective strategy to suppress dendrite growth and side reactions of Zinc (Zn) metal anode in aqueous Zn-ion battery. Herein, a multicomponent Cu-Zn alloy interlayer with superior Zn affinity, high toughness and effective inhibition effect on lattice distortion is constructed on Zn foil (Cu-Zn@Zn) to fabricate ultra-stable Zn metal anode. Owning to the advantages of high binding energy of Cu-Zn alloy layer with Zn atoms and less contact area between metallic Zn and electrolyte, the as-prepared Cu-Zn@Zn electrode not only restricts the aggregation of Zn atoms, but also suppresses the pernicious hydrogen evolution and corrosion, leading to homogeneous Zn deposition and outstanding electrochemical performances. Accordingly, the symmetric battery with Cu-Zn@Zn electrode exhibits an ultra-long cycle life of 5496 h at 1 mA cm(-2) for 1 mAh cm(-2), and the Cu-Zn@Zn//V2O5 pouch cell demonstrates excellent cycling stability with a capacity retention of 88 % after 600 cycles.
引用
收藏
页数:9
相关论文
共 53 条
[1]  
[Anonymous], 2012, ANGEW CHEM, V124, P957
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P9463
[3]  
[Anonymous], 2019, ANGEW CHEM, V131, P15988
[4]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[5]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[6]   Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium-Based Conversion Film [J].
Deng, Canbin ;
Xie, Xuesong ;
Han, Junwei ;
Lu, Bingan ;
Liang, Shuquan ;
Zhou, Jiang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
[7]   Electrodeposited Zinc-Based Films as Anodes for Aqueous Zinc Batteries [J].
Fayette, Matthew ;
Chang, Hee Jung ;
Rodriguez-Perez, Ismael A. ;
Li, Xiaolin ;
Reed, David .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) :42763-42772
[8]   Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering [J].
Fu, Kunkun ;
Sheppard, Leigh R. ;
Chang, Li ;
An, Xianghai ;
Yang, Chunhui ;
Ye, Lin .
MATERIALS CHARACTERIZATION, 2018, 139 :165-175
[9]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)
[10]   Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery [J].
Huang, Jianhang ;
Wang, Zhuo ;
Hou, Mengyan ;
Dong, Xiaoli ;
Liu, Yao ;
Wang, Yonggang ;
Xia, Yongyao .
NATURE COMMUNICATIONS, 2018, 9