Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk

被引:14
作者
Johnston, Noemie [1 ]
De Rycke, Jeffrey [2 ]
Lievens, Yolande [2 ,3 ]
van Eijkeren, Marc [2 ,3 ]
Aelterman, Jan [4 ,5 ]
Vandersmissen, Eva [6 ]
Ponte, Stephan [1 ]
Vanderstraeten, Barbara [2 ,3 ,7 ]
机构
[1] Ctr Hosp Univ Liege, Serv Radiotherapie, Liege, Belgium
[2] Univ Ghent, Fac Med & Hlth Sci, Dept Human Struct & Repair, Ghent, Belgium
[3] Ghent Univ Hosp, Dept Radiotherapy Oncol, Ghent, Belgium
[4] Univ Ghent, Ctr Xray Tomog, Dept Phys & Astron, Ghent, Belgium
[5] Univ Ghent, Dept TELIN IMEC, Image Proc Interpretat Grp, Ghent, Belgium
[6] Agfa NV, Radiol Solut R&D, Mortsel, Belgium
[7] Univ Hosp, Dept Radiotherapy Oncol, RTP Ingang 98,Corneel Heymanslaan 10, B-9000 Ghent, Belgium
关键词
Lung cancer; Radiotherapy; Treatment planning; Dose; Volume; Dice; LUNG-CANCER; RADIOTHERAPY; DELINEATION; ATLAS; VALIDATION; IMPACT;
D O I
10.1016/j.phro.2022.07.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: The geometrical accuracy of auto-segmentation using convolutional neural networks (CNNs) has been demonstrated. This study aimed to investigate the dose-volume impact of differences between automatic and manual OARs for locally advanced (LA) and peripherally located early-stage (ES) non-small cell lung cancer (NSCLC).Material and methods: A single CNN was created for automatic delineation of the heart, lungs, main left and right bronchus, esophagus, spinal cord and trachea using 55/10/40 patients for training/validation/testing. Dice score coefficient (DSC) and 95th percentile Hausdorff distance (HD95) were used for geometrical analysis. A new treatment plan based on the auto-segmented OARs was created for each test patient using 3D for ES-NSCLC (SBRT, 3-8 fractions) and IMRT for LA-NSCLC (24-35 fractions). The correlation between geometrical metrics and dose-volume differences was investigated.Results: The average (+/- 1 SD) DSC and HD95 were 0.82 +/- 0.07 and 16.2 +/- 22.4 mm, while the average dosevolume differences were 0.5 +/- 1.5 Gy (ES) and 1.5 +/- 2.8 Gy (LA). The geometrical metrics did not correlate with the observed dose-volume differences (average Pearson for DSC: -0.27 +/- 0.18 (ES) and -0.09 +/- 0.12 (LA); HD95: 0.1 +/- 0.3 mm (ES) and 0.2 +/- 0.2 mm (LA)).Conclusions: After post-processing, manual adjustments of automatic contours are only needed for clinically relevant OARs situated close to the tumor or within an entry or exit beam e.g., the heart and the esophagus for LA-NSCLC and the bronchi for ES-NSCLC. The lungs do not need to be checked further in detail.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 44 条
[1]   LungTech, an EORTC Phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective [J].
Adebahr, S. ;
Collette, S. ;
Shash, E. ;
Lambrecht, M. ;
Le Pechoux, C. ;
Faivre-Finn, C. ;
De Ruysscher, D. ;
Peulen, H. ;
Belderbos, J. ;
Dziadziuszko, R. ;
Fink, C. ;
Guckenberger, M. ;
Hurkmans, C. ;
Nestle, U. .
BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1051)
[2]   Quantifying the dosimetric impact of organ-at-risk delineation variability in head and neck radiation therapy in the context of patient setup uncertainty [J].
Aliotta, Eric ;
Nourzadeh, Hamidreza ;
Siebers, Jeffrey .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (13)
[3]  
[Anonymous], IEEE COMPUTER VISION
[4]  
[Anonymous], 2020, Global Cancer Observatory: Cancer Today
[5]   Pre-clinical validation of a novel system for fully-automated treatment planning [J].
Bijman, Rik ;
Sharfo, Abdul Wahab ;
Rossi, Linda ;
Breedveld, Sebastiaan ;
Heijmen, Ben .
RADIOTHERAPY AND ONCOLOGY, 2021, 158 :253-261
[6]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[7]   Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study [J].
Bradley, Jeffrey D. ;
Paulus, Rebecca ;
Komaki, Ritsuko ;
Masters, Gregory ;
Blumenschein, George ;
Schild, Steven ;
Bogart, Jeffrey ;
Hu, Chen ;
Forster, Kenneth ;
Magliocco, Anthony ;
Kavadi, Vivek ;
Garces, Yolanda I. ;
Narayan, Samir ;
Iyengar, Puneeth ;
Robinson, Cliff ;
Wynn, Raymond B. ;
Koprowski, Christopher ;
Meng, Joanne ;
Beitler, Jonathan ;
Gaur, Rakesh ;
Curran, Walter, Jr. ;
Choy, Hak .
LANCET ONCOLOGY, 2015, 16 (02) :187-199
[8]   External validation of deep learning-based contouring of head and neck organs at risk [J].
Brunenberg, Ellen J. L. ;
Steinseifer, Isabell K. ;
van den Bosch, Sven ;
Kaanders, Johannes H. A. M. ;
Brouwer, Charlotte L. ;
Gooding, Mark J. ;
van Elmpt, Wouter ;
Monshouwer, Rene .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 15 :8-15
[9]   A multiple organ segmentation system for CT image series using Attention-LSTM fused U-Net [J].
Chen, Pin-Hsiu ;
Huang, Cheng-Hsien ;
Chiu, Wen-Tse ;
Liao, Chen-Mao ;
Lin, Yu-Ruei ;
Hung, Shih-Kai ;
Chen, Liang-Cheng ;
Hsieh, Hui-Ling ;
Chiou, Wen-Yen ;
Lee, Moon-Sing ;
Lin, Hon-Yi ;
Liu, Wei-Min .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) :11881-11895
[10]   Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases [J].
Ciardo, Delia ;
Gerardi, Marianna Alessandra ;
Vigorito, Sabrina ;
Morra, Anna ;
Dell'acqua, Veronica ;
Javier Diaz, Federico ;
Cattani, Federica ;
Zaffino, Paolo ;
Ricotti, Rosalinda ;
Spadea, Maria Francesca ;
Riboldi, Marco ;
Orecchia, Roberto ;
Baroni, Guido ;
Leonardi, Maria Cristina ;
Jereczek-Fossa, Barbara Alicja .
BREAST, 2017, 32 :44-52