Co1-xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction

被引:37
作者
He, Denghong [1 ]
Wu, Xiaolin [1 ]
Liu, Wei [1 ]
Lei, Chaojun [1 ]
Yu, Chunlin [1 ]
Zheng, Guokui [1 ]
Pan, Junjie [1 ]
Lei, Lecheng [1 ]
Zhang, Xingwang [1 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Cobalt sulfides; Metal organic framework; Porous composite catalyst; Oxygen evolution reaction; Electrochemical water splitting; BIFUNCTIONAL ELECTROCATALYSTS; CO3O4; NANOSHEETS; GRAPHENE OXIDE; REDUCTION; NITROGEN; CATALYSTS; CONSTRUCTION; HYDROXIDES; VACANCIES; HYBRID;
D O I
10.1016/j.cclet.2018.03.020
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing active, robust, and cost-efficient electrocatalysts is critical for oxygen evolution reaction (OER). Here, a novel composite catalyst of Co1-xS embedded in porous dodecahedron carbon hybrid was synthesized by a two-step conversion protocol of a cobalt-based metal-organic framework (ZIF-67). The porous dodecahedron Co1-xS@C composite catalyst was prepared by direct oxidation of ZIF-67 followed by sulfurization reaction. The Co1-xS@C composite exhibit superior OER performance, including a low overpotential of 260 mV for 10 mA/cm(2), a small Tafel slope of similar to 85 mV/dec, outstanding stability over 80 h and almost 100% Faradaic efficiency. The various material characterizations indicate that the excellent activity and strong stability of Co1-xS@C might be attributed to good conductivity of Co1-xS, mesoporous nanostructure, and synergistic effect of Co1-xS encapsulated within porous carbon. This work provides a novel strategy for designing and synthesizing advanced composite electrocatalysts (C) 2018 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 233
页数:5
相关论文
共 47 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium [J].
Cai, Pingwei ;
Huang, Junheng ;
Chen, Junxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (17) :4858-4861
[3]   Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction [J].
Chauhan, Meenakshi ;
Reddy, Kasala Prabhakar ;
Gopinath, Chinnakonda S. ;
Deka, Sasanka .
ACS CATALYSIS, 2017, 7 (09) :5871-5879
[4]   Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Chen, Binling ;
Li, Rong ;
Ma, Guiping ;
Gou, Xinglong ;
Zhu, Yanqiu ;
Xia, Yongde .
NANOSCALE, 2015, 7 (48) :20674-20684
[5]   Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction [J].
Chen, Jun Song ;
Ren, Jiawen ;
Shalom, Menny ;
Fellinger, Tim ;
Antoniettit, Markus .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5509-5516
[6]   Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Fang, Zhiwei ;
Tong, Yun ;
Wu, Junchi ;
Lu, Xiuli ;
Peng, Xu ;
Ding, Hui ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14710-14714
[7]   Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction [J].
Chen, Sheng ;
Duan, Jingjing ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2014, 26 (18) :2925-2930
[8]   Hydrogen and fuel cell technologies for heating: A review [J].
Dodds, Paul E. ;
Staffell, Lain ;
Hawkes, Adam D. ;
Li, Francis ;
Grunewald, Philipp ;
McDowall, Will ;
Ekins, Paul .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (05) :2065-2083
[9]   Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction [J].
Dong, Bin ;
Zhao, Xin ;
Han, Guan-Qun ;
Li, Xiao ;
Shang, Xiao ;
Liu, Yan-Ru ;
Hu, Wen-Hui ;
Chai, Yong-Ming ;
Zhao, Hui ;
Liu, Chen-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13499-13508
[10]   Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J].
Dou, Shuo ;
Tao, Li ;
Huo, Jia ;
Wang, Shuangyin ;
Dai, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1320-1326