Optimized cool roofs: Integrating albedo and thermal emittance with R-value

被引:95
作者
Gentle, A. R. [1 ]
Aguilar, J. L. C. [1 ]
Smith, G. B. [1 ]
机构
[1] Univ Technol Sydney, Sch Phys & Adv Mat, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Cool roof; Albedo; R-value; Cooling load; Peak demand; Cost benefits; SOLAR;
D O I
10.1016/j.solmat.2011.07.018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For cool roofs the combined effect of the three parameters that define heat gain and loss from a roof, namely solar albedo a, thermal emittance E, and sub-roof R-value, must be considered. An accurate contribution of night sky cooling, and hence humidity and total down-welling atmospheric radiation is needed. A systematic analysis of the contribution of a roof to average cooling load per day and to peak load reductions is presented for a temperate climate zone over 6 cooling months using an hour-by-hour analysis. Eighteen 3-parameter sets (a,E,R) demonstrate the over-riding importance of a high a, while sensitivity to R-value and E drops away as albedo rises. Up-front cost per unit reductions in peak demand or average energy use per day always rises strongly as R rises unless albedo is low. A moderate R similar to 1.63 is superior to high R unless a roof is dark, or winter heating demand is high. We indicate briefly why the roof typically does not present a dominant influence on average winter heating needs in most temperate zones, enhancing the benefits of cool roofs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3207 / 3215
页数:9
相关论文
共 19 条
[1]   Global cooling: increasing world-wide urban albedos to offset CO2 [J].
Akbari, Hashem ;
Menon, Surabi ;
Rosenfeld, Arthur .
CLIMATIC CHANGE, 2009, 94 (3-4) :275-286
[2]  
Alcoforado M.J., 2008, Urban ecology: An international perspective on the interaction between humans and nature, P249, DOI [DOI 10.1007/978-0-387-73412-5_14, 10.1007/978-0-387-73412-514, DOI 10.1007/978-0-387-73412-514]
[3]  
[Anonymous], 2010, VERS 6 0 0 023 OCT
[4]   Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming [J].
Edmonds, Ian ;
Smith, Geoff .
RENEWABLE ENERGY, 2011, 36 (05) :1343-1351
[5]  
Ennos R, 2010, PHYS WORLD, V23, P22
[6]   Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics [J].
Hasan, A. ;
McCormack, S. J. ;
Huang, M. J. ;
Norton, B. .
SOLAR ENERGY, 2010, 84 (09) :1601-1612
[7]   Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder [J].
Jiang, Xun ;
Chahine, Moustafa T. ;
Olsen, Edward T. ;
Chen, Luke L. ;
Yung, Yuk L. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[8]   A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island Case-study of London [J].
Kolokotroni, Maria ;
Davies, Michael ;
Croxford, Ben ;
Bhuiyan, Saiful ;
Mavrogianni, Anna .
SOLAR ENERGY, 2010, 84 (12) :2246-2255
[9]   Overcoming problems in house energy ratings in temperate climates: A proposed new rating framework [J].
Kordjamshidi, Maria ;
King, Steve .
ENERGY AND BUILDINGS, 2009, 41 (01) :125-132
[10]   Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets [J].
Menon, Surabi ;
Akbari, Hashem ;
Mahanama, Sarith ;
Sednev, Igor ;
Levinson, Ronnen .
ENVIRONMENTAL RESEARCH LETTERS, 2010, 5 (01)