Characterization of a π-phase shift quantum gate for coherent-state qubits

被引:14
作者
Blandino, Remi [1 ]
Ferreyrol, Franck [1 ]
Barbieri, Marco [1 ]
Grangier, Philippe [1 ]
Tualle-Brouri, Rosa [1 ,2 ]
机构
[1] Univ Paris 11, CNRS, Inst Opt, Grp Opt Quant,Lab Charles Fabry, F-91127 Palaiseau, France
[2] Inst Univ France, F-75005 Paris, France
关键词
INFORMATION; COMPUTATION; LIGHT;
D O I
10.1088/1367-2630/14/1/013017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the characterization of a pi-phase shift quantum gate acting on a qubit encoded in superpositions of coherent states. We adopt a technique relying on some a priori knowledge about the physics underlying the functioning of the device. A parameter summarizing the global quality of the quantum gate is obtained by 'virtually' processing an entangled state. With such an approach, we can facilitate the characterization of our gate, focusing on the useful subspace rather than on the entire phase space.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], ARXIV08080794
[2]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[3]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[4]   Noise thresholds for optical quantum computers [J].
Dawson, CM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[5]  
Devitt SJ, 2009, ARXIV09052794
[6]   Distance measures to compare real and ideal quantum processes [J].
Gilchrist, A ;
Langford, NK ;
Nielsen, MA .
PHYSICAL REVIEW A, 2005, 71 (06)
[7]   Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations [J].
Hofmann, HF .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[8]  
Jamiolkowski A., 1972, Rep. Math. Phys., V3, P275, DOI DOI 10.1016/0034-4877(72)90011-0
[9]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[10]   Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement [J].
Lanyon, B. P. ;
Weinhold, T. J. ;
Langford, N. K. ;
Barbieri, M. ;
James, D. F. V. ;
Gilchrist, A. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)