A second order minimality condition for the Mumford-Shah functional

被引:23
作者
Cagnetti, F. [1 ]
Mora, M. G. [1 ]
Morini, M. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1007/s00526-007-0152-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new necessary minimality condition for the Mumford-Shah functional is derived by means of second order variations. It is expressed in terms of a sign condition for a nonlocal quadratic form on H(0)(1)(Gamma), Gamma being a submanifold of the regular part of the discontinuity set of the critical point. Two equivalent formulations are provided: one in terms of the first eigenvalue of a suitable compact operator, the other involving a sort of nonlocal capacity of Gamma. A sufficient condition for minimality is also deduced. Finally, an explicit example is discussed, where a complete characterization of the domains where the second variation is nonnegative can be given.
引用
收藏
页码:37 / 74
页数:38
相关论文
共 16 条
[1]  
AMBROSIO L, 2000, TOPICS GEOMETRICAL E
[2]  
[Anonymous], FUNCTIONS BOUNDED VA
[3]  
[Anonymous], P IEEE C COMP VIS PA
[4]   On the regularity of edges in image segmentation [J].
Bonnet, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (04) :485-528
[5]   A model for the quasi-static growth of brittle fractures: Existence and approximation results [J].
Dal Maso, G ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (02) :101-135
[6]  
Deny J., 1954, Annales de l'institut Fourier, tome, V5, P305, DOI [10.5802/aif.55, DOI 10.5802/AIF.55]
[7]   Revisiting brittle fracture as an energy minimization problem [J].
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) :1319-1342
[8]  
Griffith A.A., 1921, PHILOS T R SOC LOND, V221, P163, DOI DOI 10.1098/RSTA.1921.0006
[9]  
Gurtin ME, 1981, MATH SCI ENG, V158
[10]  
HEBEY EMMANUEL, 1996, Sobolev spaces on Riemannian manifolds, V1635