FIXED POINT THEOREMS FOR CONVEX-POWER CONDENSING OPERATORS IN BANACH ALGEBRA

被引:0
作者
Amor, Sana Hadj [1 ]
Traiki, Abdelhak [1 ]
机构
[1] Univ Sousse, Higher Sch Sci & Technol, Dept Math, Sousse, Tunisia
关键词
fixed point theorems; measure of noncompactness; convex-power condensing operator; equation of Volterra type; INTEGRAL-EQUATIONS; EXISTENCE; SCHAUDER; SUM;
D O I
10.1216/jie.2022.34.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concept of a convex-power condensing mapping A.B + C in a Banach algebra relative to a measure of noncompactness as a generalization of condensing and convex-power condensing mappings. We present new fixed point theorems, and we apply these results to investigate the existence of solutions for a nonlinear hybrid integral equation of Volterra type.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 31 条