Projections on convex sets in the relaxed limit

被引:4
作者
Artstein, Z [1 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
来源
SET-VALUED ANALYSIS | 2001年 / 9卷 / 1-2期
关键词
Young measures; relaxation; projections; best approximation; Mosco convergence; sensitivity;
D O I
10.1023/A:1011294329994
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper establishes the continuity of the best approximation, or the projection. of a function in L-p for p is an element of [1, infinity), on a closed convex set in the space, when the set varies and converges to a limit set in the Young-measure relaxation of the space. To this end a strong-type convergence and a convexity structure are identified on the space of Young measures. The appropriate convergence of sets with respect to which the continuity holds is the Mosco convergence of sets associated with the strong-type convergence of functions.
引用
收藏
页码:13 / 34
页数:22
相关论文
共 24 条
[1]   LP-continuity of conditional expectations [J].
Alonso, A ;
Brambila-Paz, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 221 (01) :161-176
[2]   Relaxed multifunctions and Young multimeasures [J].
Artstein, Z .
SET-VALUED ANALYSIS, 1998, 6 (03) :237-255
[3]   CHATTERING VARIATIONAL LIMITS OF CONTROL-SYSTEMS [J].
ARTSTEIN, Z .
FORUM MATHEMATICUM, 1993, 5 (04) :369-403
[4]  
ARTSTEIN Z, 1999, CALCULUS VARIATIONS, P1
[5]  
ARTSTEIN Z, IN PRESS PROBAB THEO
[6]  
Attouch H., 1984, Applicable Mathematics Series
[7]  
Balder E. J., 1995, CAHIERS MATH DECISIO, V9517
[8]   A GENERAL DENSENESS RESULT FOR RELAXED CONTROL-THEORY [J].
BALDER, EJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (03) :463-475
[9]   Consequences of denseness of Dirac Young measures [J].
Balder, EJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (02) :536-540
[10]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207