Relaxation to stationary states for anomalous diffusion

被引:12
作者
Dybiec, Bartlomiej [2 ,3 ]
Sokolov, Igor M. [1 ]
Chechkin, Aleksei V. [4 ,5 ]
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[3] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, PL-30059 Krakow, Poland
[4] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[5] Inst Theoret Phys NSC KIPT, UA-61108 Kharkov, Ukraine
关键词
Anomalous diffusion; Fractional Fokker-Planck-Smoluchowski equation; Continuous time random walks; Subordination; Stochastic representation; FOKKER-PLANCK EQUATIONS; LEVY FLIGHTS; DIFFERENTIAL-EQUATIONS; LANGEVIN-EQUATIONS; RANDOM-WALKS; DRIVEN; NOISE;
D O I
10.1016/j.cnsns.2011.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Fokker-Planck-Smoluchowski equation serves as a standard description of the anomalous diffusion. Within a current presentation we study properties of stationary states of the fractional Fokker-Planck-Smoluchowski equation in bounding potentials with special attention to the way in which stationary states are approached. It is demonstrated that the shape of the stationary state depends on exponents characterizing the jump length distributions and the external potential. The convergence rate to the stationary state can be of the double power-law type and is determined solely by the subdiffusion parameter. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4549 / 4557
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 1968, An introduction to probability theory and its applications
[3]  
[Anonymous], 1990, HDB STOCHASTIC METHO
[4]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[5]   Properties of the Mittag-Leffler relaxation function [J].
Berberan-Santos, MN .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) :629-635
[6]   Stationary states of non-linear oscillators driven by Levy noise [J].
Chechkin, A ;
Gonchar, V ;
Klafter, J ;
Metzler, R ;
Tanatarov, L .
CHEMICAL PHYSICS, 2002, 284 (1-2) :233-251
[7]  
Chechkin AV, 2006, ADV CHEM PHYS, V133, P439
[8]   Levy flights in a steep potential well [J].
Chechkin, AV ;
Gonchar, VY ;
Klafter, J ;
Metzler, R ;
Tanatarov, LV .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) :1505-1535
[9]   Bifurcation, bimodality, and finite variance in confined Levy flights [J].
Chechkin, AV ;
Klafter, J ;
Gonchar, VY ;
Metzler, R ;
Tanatarov, LV .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[10]   Stationary states in Langevin dynamics under asymmetric Levy noises [J].
Dybiec, B. ;
Gudowska-Nowak, E. ;
Sokolov, I. M. .
PHYSICAL REVIEW E, 2007, 76 (04)