Power functional theory for the dynamic test particle limit

被引:25
作者
Brader, Joseph M. [1 ]
Schmidt, Matthias [2 ]
机构
[1] Univ Fribourg, Soft Matter Theory, CH-1700 Fribourg, Switzerland
[2] Univ Bayreuth, Inst Phys, Theoret Phys 2, D-95440 Bayreuth, Germany
关键词
colloids; density functional theory; dynamics; IRREVERSIBLE-PROCESSES; STATISTICAL-MECHANICS; FLUIDS;
D O I
10.1088/0953-8984/27/19/194106
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein-Zernike relation for dynamic pair correlation functions.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Dynamical density functional theory and its application to spinodal decomposition [J].
Archer, AJ ;
Evans, R .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (09) :4246-4254
[2]   Dynamics in inhomogeneous liquids and glasses via the test particle limit [J].
Archer, Andrew J. ;
Hopkins, Paul ;
Schmidt, Matthias .
PHYSICAL REVIEW E, 2007, 75 (04)
[3]   Nonequilibrium Ornstein-Zernike relation for Brownian many-body dynamics [J].
Brader, Joseph M. ;
Schmidt, Matthias .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (10)
[4]   Van Hove function of colloidal mixtures:: Exact results [J].
Chávez-Rojo, Marco Antonio ;
Medina-Noyola, Magdaleno .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) :55-78
[5]   GENERALIZED HYDRODYNAMICS AND TIME CORRELATION FUNCTIONS [J].
CHUNG, CH ;
YIP, S .
PHYSICAL REVIEW, 1969, 182 (01) :323-&
[6]   LIQUID DYNAMICS AND INELASTIC SCATTERING OF NEUTRONS [J].
DEGENNES, PG .
PHYSICA, 1959, 25 (09) :825-839
[7]  
Dhont JKG., 1996, INTRO DYNAMICS COLLO
[8]   NATURE OF THE LIQUID-VAPOR INTERFACE AND OTHER TOPICS IN THE STATISTICAL-MECHANICS OF NONUNIFORM, CLASSICAL FLUIDS [J].
EVANS, R .
ADVANCES IN PHYSICS, 1979, 28 (02) :143-200
[9]  
Gotze W., 2009, Complex Dynamics of Glass-Forming Liquids: AMode-Coupling Theory, V143
[10]  
Grabert H., 1982, PROJECTION OPERATOR