We discuss the dust particle dynamics in tokamak edge plasmas, with special emphasis on dust particle transport in the sheath and plasma recycling regions. We demonstrate that being dragged by plasma flows in the vicinity of the material surface, dust particles can be accelerated to speeds of similar to 10(3)-10(4) cm s(-1). The opposite direction of plasma recycling flow as well as the frictional forces at the inner and outer divertor legs, propel the dust particles in opposite toroidal directions depending on their location. The interactions of a dust particle with a corrugated surface or plasma turbulence can cause it to exit the recycling region and fly through the scrape-off layer plasma towards the tokamak core. It is conceivable that dust formation in and transport from the divertor region can play an important role in core plasma contamination. However, even then, the dust particle density around the separatrix is similar to 10(-2) cm(-3), which makes it difficult to detect.