Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction

被引:24
作者
Forgoston, Eric [1 ]
Bianco, Simone [2 ]
Shaw, Leah B. [2 ]
Schwartz, Ira B. [1 ]
机构
[1] USN, Res Lab, Nonlinear Syst Dynam Sect, Div Plasma Phys, Washington, DC 20375 USA
[2] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA
关键词
Stochastic dynamical systems and Lyapunov exponents; Optimal path to extinction; LAGRANGIAN COHERENT STRUCTURES; LARGE FLUCTUATIONS; COMMUNITY SIZE; STOCHASTICITY; PERSISTENCE; MANIFOLDS; DISCRETE; MEASLES; MODELS;
D O I
10.1007/s11538-010-9537-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extinction of an epidemic or a species is a rare event that occurs due to a large, rare stochastic fluctuation. Although the extinction process is dynamically unstable, it follows an optimal path that maximizes the probability of extinction. We show that the optimal path is also directly related to the finite-time Lyapunov exponents of the underlying dynamical system in that the optimal path displays maximum sensitivity to initial conditions. We consider several stochastic epidemic models, and examine the extinction process in a dynamical systems framework. Using the dynamics of the finite-time Lyapunov exponents as a constructive tool, we demonstrate that the dynamical systems viewpoint of extinction evolves naturally toward the optimal path.
引用
收藏
页码:495 / 514
页数:20
相关论文
共 53 条
[1]   Comparison of deterministic and stochastic SIS and SIR models in discrete time [J].
Allen, LJS ;
Burgin, AM .
MATHEMATICAL BIOSCIENCES, 2000, 163 (01) :1-33
[2]   Stochastic amplification in epidemics [J].
Alonso, David ;
McKane, Alan J. ;
Pascual, Mercedes .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (14) :575-582
[3]  
ANDERSON R M, 1991
[4]  
Andersson H., 2012, STOCHASTIC EPIDEMIC, V151
[5]  
[Anonymous], NONLINEAR OSCILLATIO
[6]   Population extinction in a time-modulated environment [J].
Assaf, Michael ;
Kamenev, Alex ;
Meerson, Baruch .
PHYSICAL REVIEW E, 2008, 78 (04)
[7]   When is a disease eradicable?: 100 years of lessons learned [J].
Aylward, B ;
Hennessey, KA ;
Zagaria, N ;
Olivé, JM ;
Cochi, S .
AMERICAN JOURNAL OF PUBLIC HEALTH, 2000, 90 (10) :1515-1520
[8]   Dynamical evolution of ecosystems [J].
Azaele, Sandro ;
Pigolotti, Simone ;
Banavar, Jayanth R. ;
Maritan, Amos .
NATURE, 2006, 444 (7121) :926-928
[9]   ECOLOGY Towards a theory of biodiversity [J].
Banavar, Jayanth R. ;
Maritan, Amos .
NATURE, 2009, 460 (7253) :334-335
[10]  
Bartlett M.S., 1961, Stochastic Population Models in Ecology and Epidemiology