Lithium-Anode Protection in Lithium-Sulfur Batteries

被引:125
作者
Yan, Chong [1 ,2 ]
Zhang, Xue-Qiang [3 ]
Huang, Jia-Qi [2 ]
Liu, Quanbing [4 ]
Zhang, Qiang [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
[4] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; METAL ANODE; GRAPHITE/ELECTROLYTE INTERFACE; ELECTROCHEMICAL PROPERTIES; SOLVATION SHEATH; CATHODE MATERIAL; ELECTROLYTE; PERFORMANCE; COMPOSITE; CELLS;
D O I
10.1016/j.trechm.2019.06.007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur (Li-S) batteries show significant promise as next-generation energy-storage devices due to their high energy density (2600 Wh kg(-1)). However, the severe shuttling of polysulfide intermediates and low Coulombic efficiency during operation induce rapid capacity loss, hindering their practical applications. Although sulfur coin cells can reach 1000 cycles, sulfur pouch cells reach only dozens of cycles before the lithium-metal anode is damaged by the electrolyte and/or polysulfides. Therefore, lithium-metal protection is an important issue in realizing long lifespans of Li-S pouch cells. In this review, we highlight recent progress on lithium-metal protection, including altering the solvation structure of lithium ions in the liquid electrolyte, designing an artificial solid electrolyte interphase (SEI), employing solid-state electrolytes, and adopting micro/nanostructured hosts.
引用
收藏
页码:693 / 704
页数:12
相关论文
共 99 条
[1]  
[Anonymous], TRENDS CHEM
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S battery [J].
Barghamadi, Marzieh ;
Best, Adam S. ;
Hollenkamp, Anthony F. ;
Mahon, Peter ;
Musameh, Mustafa ;
Ruther, Thomas .
ELECTROCHIMICA ACTA, 2016, 222 :257-263
[4]   Effects of High and Low Salt Concentration in Electrolytes at Lithium-Metal Anode Surfaces [J].
Camacho-Forero, Luis E. ;
Smith, Taylor W. ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :182-194
[5]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[6]   Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery [J].
Chang, DR ;
Lee, SH ;
Kim, SW ;
Kim, HT .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :452-460
[7]   Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium [J].
Chang, Jian ;
Shang, Jian ;
Sun, Yongming ;
Ono, Luis K. ;
Wang, Dongrui ;
Ma, Zhijun ;
Huang, Qiyao ;
Chen, Dongdong ;
Liu, Guoqiang ;
Cui, Yi ;
Qi, Yabing ;
Zheng, Zijian .
NATURE COMMUNICATIONS, 2018, 9
[8]   A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries [J].
Chen, Shuru ;
Yu, Zhaoxin ;
Gordin, Mikhail L. ;
Yi, Ran ;
Song, Jiangxuan ;
Wang, Donghai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :6959-6966
[9]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[10]   Review-Li Metal Anode in Working Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (01) :A6058-A6072