MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy

被引:48
作者
Peeken, Jan C. [1 ,2 ,3 ,4 ,5 ]
Asadpour, Rebecca [1 ]
Specht, Katja [6 ]
Chen, Eleanor Y. [7 ]
Klymenko, Olena [1 ]
Akinkuoroye, Victor [1 ]
Hippe, Daniel S. [8 ]
Spraker, Matthew B. [9 ]
Schaub, Stephanie K. [4 ]
Dapper, Hendrik [1 ]
Knebel, Carolin [10 ]
Mayr, Nina A. [4 ]
Gersing, Alexandra S. [11 ]
Woodruff, Henry C. [5 ,12 ]
Lambin, Philippe [5 ,12 ]
Nyflot, Matthew J. [4 ,13 ]
Combs, Stephanie E. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich TUM, Dept Radiat Oncol, Klinikum Rechts Isar, Munich, Germany
[2] Helmholtz Zentrum, Inst Radiat Med IRM, Dept Radiat Sci DRS, Munich, Germany
[3] Deutsch Konsortium Translat Krebsforsch DKTK, Partner Site Munich, Munich, Germany
[4] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA
[5] Maastricht Univ, GROW Sch Oncol & Dev Biol, Dept Precis Med, Maastricht, Netherlands
[6] Tech Univ Munich, Inst Pathol, Munich, Germany
[7] Univ Washington, Dept Lab Med & Pathol, Seattle, WA 98195 USA
[8] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[9] Washington Univ St Louis, Dept Radiat Oncol, St Louis, MO USA
[10] Tech Univ Munich TUM, Dept Orthoped & Sports Orthoped, Klinikum Rechts Isar, Munich, Germany
[11] Tech Univ Munich TUM, Dept Radiol, Klinikum Rechts Isar, Munich, Germany
[12] Maastricht Univ, GROW Sch Oncol & Dev Biol, Med Ctr, Dept Radiol & Nucl Imaging, Maastricht, Netherlands
[13] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
关键词
Soft-tissue sarcoma; Delta radiomics; Neoadjuvant radiotherapy; Machine learning; Response prediction; MRI; EUROPEAN ORGANIZATION; FEATURE-SELECTION; CANCER; CHEMOTHERAPY; EXTREMITY; SURVIVAL; NECROSIS; FEATURES; MODEL;
D O I
10.1016/j.radonc.2021.08.023
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment ("delta-radio mics") may be able to predict the pathological complete response (pCR). Methods: MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2 weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort. Results: The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression. Conclusion: This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations. (c) 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 164 (2021) 73-82
引用
收藏
页码:73 / 82
页数:10
相关论文
共 61 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): a multicentre, phase 2-3, randomised, controlled trial [J].
Bonvalot, Sylvie ;
Rutkowski, Piotr L. ;
Thariat, Juliette ;
Carrere, Sebastien ;
Ducassou, Anne ;
Sunyach, Marie-Pierre ;
Agoston, Peter ;
Hong, Angela ;
Mervoyer, Augustin ;
Rastrelli, Marco ;
Moreno, Victor ;
Li, Rub K. ;
Tiangco, Beatrice ;
Herraez, Antonio Casado ;
Gronchi, Alessandro ;
Mangel, Laszlo ;
Sy-Ortin, Teresa ;
Hohenberger, Peter ;
de Baere, Thierry ;
Le Cesne, Axel ;
Helfre, Sylvie ;
Saada-Bouzid, Esma ;
Borkowska, Aneta ;
Anghel, Rodica ;
Co, Ann ;
Gebhart, Michael ;
Kantor, Guy ;
Montero, Angel ;
Loong, Herbert H. ;
Verges, Ramona ;
Lapeire, Lore ;
Dema, Sorin ;
Kacso, Gabriel ;
Austen, Lyn ;
Moureau-Zabotto, Laurence ;
Servois, Vincent ;
Wardelmann, Eva ;
Terrier, Philippe ;
Lazar, Alexander J. ;
Bovee, Judith V. M. G. ;
Le Pechoux, Cecile ;
Papi, Zsusanna .
LANCET ONCOLOGY, 2019, 20 (08) :1148-1159
[3]  
Breiman L., 2001, Mach. Learn., V45, P5
[4]   Medical progress: Soft-tissue sarcomas in adults [J].
Clark, MA ;
Fisher, C ;
Judson, I ;
Thomas, JM .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (07) :701-711
[5]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376]
[6]   Can radiomics improve the prediction of metastatic relapse of myxoid/round cell liposarcomas? [J].
Crombe, Amandine ;
Le Loarer, Francois ;
Sitbon, Maxime ;
Italiano, Antoine ;
Stoeckle, Eberhard ;
Buy, Xavier ;
Kind, Michele .
EUROPEAN RADIOLOGY, 2020, 30 (05) :2413-2424
[7]   High-Grade Soft-Tissue Sarcomas: Can Optimizing Dynamic Contrast-Enhanced MRI Postprocessing Improve Prognostic Radiomics Models? [J].
Crombe, Amandine ;
Fadli, David ;
Buy, Xavier ;
Italiano, Antoine ;
Saut, Olivier ;
Kind, Michele .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (01) :282-297
[8]   T2-based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. [J].
Crombe, Amandine ;
Perier, Cynthia ;
Kind, Michele ;
De Senneville, Baudouin Denis ;
Le Loarer, Francois ;
Italiano, Antoine ;
Buy, Xavier ;
Saut, Olivier .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (02) :497-510
[9]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[10]   Identification of noninvasive imaging surrogates for brain tumor gene-expression modules [J].
Diehn, Maximilian ;
Nardini, Christine ;
Wang, David S. ;
McGovern, Susan ;
Jayaraman, Mahesh ;
Liang, Yu ;
Alclape, Kenneth ;
Cha, Soonmee ;
Kuo, Michael D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :5213-5218