Multivariable coupling and synchronization in complex networks

被引:29
作者
Nazarimehr, Fahimeh [1 ]
Panahi, Shirin [1 ]
Jalili, Mahdi [2 ]
Perc, Matjaz [3 ,4 ,5 ]
Jafari, Sajad [1 ]
Fercec, Brigita [4 ,6 ]
机构
[1] Amirkabir Univ Technol, Biomed Engn Dept, Tehran 158754413, Iran
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[3] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, SLO-2000 Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Mladinska 3, SLO-2000 Maribor, Slovenia
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
关键词
Multivariable coupling; Synchronization; Complex network; Chaos; Nonlinear dynamics; CHAOTIC SYSTEM; MOTION;
D O I
10.1016/j.amc.2019.124996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization in complex networks is an evergreen subject with numerous applications in biological, social, and technological systems. We here study whether a transition from a single variable to multivariable coupling facilitates the emergence of synchronization in a network of circulant oscillators. We show that the network indeed has much better synchronizability when individual dynamical units are coupled through multiple variables rather than through just one. In particular, we consider in detail four different coupling scenarios for a simple three-dimensional chaotic circulant system, and we determine the smallest coupling strength needed for complete synchronization. We find that the smallest coupling strength is needed when the coupling is through all three variables, and that for the same level of synchronization through a single variable a much stronger coupling strength is needed. Our results thus show that multivariable coupling provides a significantly more efficient synchronization profile in complex networks. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 42 条
[1]  
Abdo B., 2017, US Patent, Patent No. [9,697,473, 9697473]
[2]  
[Anonymous], 1998, CHAOS ORDER METHODOL
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Simple Chaotic Flows with a Curve of Equilibria [J].
Barati, Kosar ;
Jafari, Sajad ;
Sprott, Julien Clinton .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (12)
[5]  
Barto Lynch J. A, 1995, THESIS
[6]   Chimera states: Effects of different coupling topologies [J].
Bera, Bidesh K. ;
Majhi, Soumen ;
Ghosh, Dibakar ;
Perc, Matjaz .
EPL, 2017, 118 (01)
[7]  
Brown R, 1992, INT J BIFURCAT CHAOS, V2, P1005, DOI 10.1142/S0218127492000811
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Synchronization of an uncertain unified chaotic system via adaptive control [J].
Chen, SH ;
Lü, JH .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :643-647
[10]   Synchronous period-doubling in flicker vision of salamander and man [J].
Crevier, DW ;
Meister, M .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (04) :1869-1878