Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial SCADA and Vibration Data

被引:31
作者
Natili, Francesco [1 ]
Daga, Alessandro Paolo [2 ]
Castellani, Francesco [1 ]
Garibaldi, Luigi [2 ]
机构
[1] Univ Perugia, Dept Engn, Via G Durand 93, I-06125 Perugia, Italy
[2] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 15期
关键词
wind energy; wind turbines; condition monitoring; vibration analysis; fault diagnosis; SCADA; data analysis; SPECTRAL KURTOSIS; FAULT-DIAGNOSIS; GEARBOX; TRENDS; MODEL;
D O I
10.3390/app11156785
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Periodic supervision of wind turbine bearings in the industry practice. Timely damage diagnosis of wind turbine rolling elements is a keystone for improving availability and eventually diminishing the cost of wind energy: from this point of view, it is a priority to integrate high-level practices into the real-world operation and maintenance of wind farms. On this basis, the present study is devoted to the formulation of reliable methodologies for the supervision of wind turbine bearings, which possibly can be integrated in the industrial practice. For this reason, this study is a collaboration between a company (ENGIE Italia), the University of Perugia and the Politecnico di Torino. The analysis is based on the exploitation of the data types which are available to wind farm managers from industrial control systems: SCADA (Supervisory Control And Data Acquisition) and TCM (Turbine Condition Monitoring). Due to the intrinsic sampling time difference between SCADA and TCM data (a few minutes the former, up to the millisecond for the latter), the proposed methodology is designed as multi-scale. At first, historical SCADA data are processed and the behavior of the oil filter pressure is analyzed for all the wind turbines in the farm: this provides preliminary advice for identifying presumably healthy wind turbines from those suspected of damage. A second step for the SCADA analysis is then represented by the study of the temperature trends of the bearings through a Support Vector Regression: the incoming damage is individuated from the analysis of the mismatch between measurements and estimates provided by the normal behavior model. Finally, the healthy units are selected as the reference and the faulty as the target for the analysis of TCM vibration data in the time domain: statistical features are computed on independent chunks of the signals and, using a Novelty Index, it was possible to distinguish the damaged wind turbines with respect to the reference ones. In light of the interest in application of the proposed methodology, good practice criteria in selecting and managing the data are discussed as well.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines [J].
Abdelbaky, Mohamed Abdelkarim ;
Liu, Xiangjie ;
Jiang, Di .
RENEWABLE ENERGY, 2020, 145 :981-996
[2]   Review of Wind Turbine Research in 21st Century [J].
Amano, Ryoichi S. .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2017, 139 (05) :0508011-0508018
[3]   A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions [J].
Antoniadou, I. ;
Manson, G. ;
Staszewski, W. J. ;
Barszcz, T. ;
Worden, K. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 64-65 :188-216
[4]  
Astolfi D., 2014, Diagnostyka, V15, P71
[5]  
Astolfi D., 2020, P ISMA 2020
[6]  
Astolfi D, 2017, INT J RENEW ENERGY R, V7, P965
[7]   Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine [J].
Barszcz, Tomasz ;
Randall, Robert B. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) :1352-1365
[8]   A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis [J].
Byrne, Raymond ;
Astolfi, Davide ;
Castellani, Francesco ;
Hewitt, Neil J. .
ENERGIES, 2020, 13 (08)
[9]   Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements [J].
Castellani, Francesco ;
Garibaldi, Luigi ;
Daga, Alessandro Paolo ;
Astolfi, Davide ;
Natili, Francesco .
ENERGIES, 2020, 13 (06)
[10]  
Daga AP, 2020, 2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (METROIND4.0&IOT), P548, DOI [10.1109/MetroInd4.0IoT48571.2020.9138196, 10.1109/metroind4.0iot48571.2020.9138196]