On the Time-Dependent Solutions of the Schrodinger Equation. I. The Linear Time-Dependent Potential

被引:4
作者
Palma, A. [1 ]
Villa, M. [2 ]
Sandoval, L. [3 ]
机构
[1] BUAP, Inst Fis, Puebla 72570, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[3] Benemerita Univ Autonoma Puebla, Fac Ciencias Computac, Puebla 72570, Mexico
关键词
time dependent Hamiltonian; linear potential; Lie Algebra; Schrodinger; equation; Wei-Norman theorem;
D O I
10.1002/qua.22781
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solution of the Schrodinger equation for the linear time-dependent potential has recently been the subject of several publications. In this report, we show this is one of the few systems that leads to a solvable Lie algebra. In fact, we consider a more general problem where the linear time-dependent potential is only a particular case. The solution is found by using the well-known theorem of Wei-Norman. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1646-1650, 2011
引用
收藏
页码:1646 / 1650
页数:5
相关论文
共 24 条
[1]  
ACKERMAN M, 1976, LIE GROUPS HIST FRON, V3, P247
[2]   Comment on "Solution of the Schrodinger equation for the time-dependent linear potential" [J].
Bauer, J .
PHYSICAL REVIEW A, 2002, 65 (03) :2
[3]   Comment on "Solution of the Schrodinger equation for the time-dependent linear potential" [J].
Bekkar, H ;
Benamira, F ;
Maamache, M .
PHYSICAL REVIEW A, 2003, 68 (01) :2
[4]   Quantum computing in cavity QED with cold trapped ions by bichromatic radiation [J].
Feng, M .
PHYSICAL REVIEW A, 2002, 65 (06) :4
[5]   AN OPERATOR CALCULUS HAVING APPLICATIONS IN QUANTUM ELECTRODYNAMICS [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1951, 84 (01) :108-128
[6]   The Compton effect according to the Schrodinger theory [J].
Gordon, W .
ZEITSCHRIFT FUR PHYSIK, 1926, 40 (1/2) :117-133
[7]   Reply to "Comment on 'Solution of the Schrodinger equation for the time-dependent linear potential' " [J].
Guedes, I .
PHYSICAL REVIEW A, 2003, 68 (01) :1
[8]   Solution of the Schrodinger equation for the time-dependent linear potential [J].
Guedes, I .
PHYSICAL REVIEW A, 2001, 63 (03) :1-3
[9]  
Kolchin E.R., 1973, Differential Algebras and Algebraic Groups
[10]  
Lefebvre R, 2000, INT J QUANTUM CHEM, V80, P110, DOI 10.1002/1097-461X(2000)80:2<110::AID-QUA6>3.0.CO