Compact and Low-Profile Textile EBG-Based Antenna for Wearable Medical Applications

被引:137
作者
Ashyap, Adel Y. I. [1 ]
Abidin, Zuhairiah Zainal [1 ]
Dahlan, Samsul Haimi [1 ]
Majid, Huda A. [1 ]
Shah, Shaharil Mohd [1 ]
Kamarudin, Muhammad Ramlee [2 ]
Alomainy, Akram [3 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Elect & Elect Engn, Res Ctr Appl Electromagnet, Batu Pahat 86400, Malaysia
[2] Cranfield Univ, Def Acad United Kingdom, Cranfield Def & Secur, Ctr Elect Warfare Informat & Cyber, Shrivenham SN6 8LA, England
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Antennas & Electromagnet Res Grp, London E1 4NS, England
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2017年 / 16卷
关键词
Artificial ground plane; electromagnetic bandgap (EBG); flexible antennas; specific absorption rate (SAR); wearable textile; MONOPOLE ANTENNA; HUMAN-BODY; BAND; AMC;
D O I
10.1109/LAWP.2017.2732355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A compact wearable antenna with a novel miniaturized electromagnetic bandgap (EBG) structure at 2.4 GHz for medical application is presented in this letter. The design demonstrates a robust, compact, and low-profile solution to meet the requirements of wearable applications. The EBG structure reduces the back radiation and the impact of frequency detuning due to the high losses of human body. In addition, the structure improves the front-to-back ratio (FBR) by 15.5 dB. The proposed compact antenna with dimensions of 46 x 46 x 2.4 mm(3) yields an impedance bandwidth of 27% (2.17-2.83 GHz), with a gain enhancement of 7.8 dBi and more than 95% reduction in the specific absorption rate. Therefore, the antenna is a promising candidate for integration into wearable devices applied in various domains, specifically biomedical technology.
引用
收藏
页码:2550 / 2253
页数:4
相关论文
共 19 条
[1]   Computation of specific absorption rate in the human body due to base-station antennas using a hybrid formulation [J].
Abd-Alhameed, RA ;
Excell, PS ;
Mangoud, MA .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2005, 47 (02) :374-381
[2]  
Ahlbom A, 1998, HEALTH PHYS, V74, P494
[3]   Statistical analysis and performance evaluation for on-body radio propagation with microstrip patch antennas [J].
Alomainy, Akram ;
Hao, Yang ;
Owadally, Abdus ;
Parini, Clive G. ;
Nechayev, Yuri ;
Constantinou, Costas C. ;
Hall, Peter S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (01) :245-248
[4]  
Aminian A., 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), P430
[5]  
[Anonymous], 2002, C9532002 IEEE
[6]   Characteristics of Cavity Slot Antenna for Body-Area Networks [J].
Haga, Nozomi ;
Saito, Kazuyuki ;
Takahashi, Masaharu ;
Ito, Koichi .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (04) :837-843
[7]  
Helin Yang, 2016, Progress In Electromagnetics Research C, V61, P115
[8]   A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices [J].
Jiang, Zhi Hao ;
Brocker, Donovan E. ;
Sieber, Peter E. ;
Werner, Douglas H. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (08) :4021-4030
[9]  
KAMARDIN K, 2016, APPL PHYS A MATER, V122
[10]   A compact uniplanar EBG structure and its application in band-notched UWB filter [J].
Kurra, Lalithendra ;
Abegaonkar, Mahesh P. ;
Basu, Ananjan ;
Koul, Shiban K. .
INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2013, 5 (04) :491-498