A note on Rosenblatt distributions

被引:29
作者
Albin, JMP [1 ]
机构
[1] Univ Gothenburg, Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
central limit theorem; X-2 limit theorem; domain of attraction; extreme values; laplace transform; local limit theorem; non-central limit theorem; Rosenblatt distribution; Rosenblatt process; self-similar process; tauberian theorem;
D O I
10.1016/S0167-7152(98)00109-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rosenblatt processes are functional limits in non-central limit theorems for strongly dependent Gaussian sequences. Using local limit techniques we show that their marginal distributions belong to the Type I domain of attraction of extremes. This in turn makes it possible to obtain bounds on local extremes for Rosenblatt processes. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 14 条
[1]   ON EXTREMAL THEORY FOR STATIONARY-PROCESSES [J].
ALBIN, JMP .
ANNALS OF PROBABILITY, 1990, 18 (01) :92-128
[3]   Minima of H-valued Gaussian processes [J].
Albin, JMP .
ANNALS OF PROBABILITY, 1996, 24 (02) :788-824
[4]  
ALBIN JMP, 1998, IN PRESS ANN PROBAB
[5]   SOJOURNS AND EXTREMES OF STATIONARY-PROCESSES [J].
BERMAN, SM .
ANNALS OF PROBABILITY, 1982, 10 (01) :1-46
[6]  
BINGHAM N. H., 1989, Regular variation
[7]   EXTREMES OF MOVING AVERAGES OF RANDOM-VARIABLES WITH FINITE END-POINT [J].
DAVIS, RA ;
RESNICK, SI .
ANNALS OF PROBABILITY, 1991, 19 (01) :312-328
[8]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[9]   ON A STRONG TAUBERIAN RESULT [J].
FEIGIN, PD ;
YASHCHIN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01) :35-48
[10]  
Hirschmann I.I., 1955, The Convolution Transform