Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images

被引:77
|
作者
Li, Zhongwen [1 ]
Guo, Chong [1 ]
Nie, Danyao [3 ]
Lin, Duoru [1 ]
Zhu, Yi [1 ,4 ]
Chen, Chuan [1 ,4 ]
Wu, Xiaohang [1 ]
Xu, Fabao [1 ]
Jin, Chenjin [1 ]
Zhang, Xiayin [1 ]
Xiao, Hui [1 ]
Zhang, Kai [1 ,5 ]
Zhao, Lanqin [1 ]
Yari, Pisong [1 ]
Lai, Weiyi [1 ]
Li, Jianyin [1 ]
Feng, Weibo [1 ]
Li, Yonghao [1 ]
Ting, Daniel Shu Wei [6 ,7 ]
Lin, Haotian [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Ctr Precis Med, Guangzhou 510060, Peoples R China
[3] Jinan Univ, Shenzhen Eye Hosp, Shenzhen Key Lab Ophthalmol, Affiliated Shenzhen Eye Hosp, Shenzhen 518001, Peoples R China
[4] Univ Miami, Dept Mol & Cellular Pharmacol, Miller Sch Med, Miami, FL 33136 USA
[5] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[6] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 168751, Singapore
[7] Natl Univ Singapore, Duke NUS Med Sch, Singapore 119077, Singapore
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DIABETIC-RETINOPATHY; VISUAL RECOVERY; EPIDEMIOLOGY; REATTACHMENT; PROGRESSION; VALIDATION; PROGNOSIS; DISEASES;
D O I
10.1038/s42003-019-0730-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Li et al. develop a cascaded deep learning system for automated retinal detachment and macular status detection based on ultra-widefield fundus (UWF) images. With reliable and comparable performance to an experienced opthamologist, this system can also provide guidance to patients regarding appropriate preoperative posturing to reduce RD progression. Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of retinal detachment can improve the rate of successful reattachment and the visual results, especially before macular involvement. Manual retinal detachment screening is time-consuming and labour-intensive, which is difficult for large-scale clinical applications. In this study, we developed a cascaded deep learning system based on the ultra-widefield fundus images for automated retinal detachment detection and macula-on/off retinal detachment discerning. The performance of this system is reliable and comparable to an experienced ophthalmologist. In addition, this system can automatically provide guidance to patients regarding appropriate preoperative posturing to reduce retinal detachment progression and the urgency of retinal detachment repair. The implementation of this system on a global scale may drastically reduce the extent of vision impairment resulting from retinal detachment by providing timely identification and referral.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images
    Zhongwen Li
    Chong Guo
    Danyao Nie
    Duoru Lin
    Yi Zhu
    Chuan Chen
    Xiaohang Wu
    Fabao Xu
    Chenjin Jin
    Xiayin Zhang
    Hui Xiao
    Kai Zhang
    Lanqin Zhao
    Pisong Yan
    Weiyi Lai
    Jianyin Li
    Weibo Feng
    Yonghao Li
    Daniel Shu Wei Ting
    Haotian Lin
    Communications Biology, 3
  • [2] A cascaded deep learning system for detecting retinal detachment and discerning macular status using ultra-widefield fundus images
    Li, Zhongwen
    Guo, Chong
    Lin, Duoru
    Zhao, Lanqin
    Wang, Dongni
    Zhang, Xulin
    Yun, Dongyuan
    Lin, Haotian
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [3] A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images
    Li, Zhongwen
    Guo, Chong
    Nie, Danyao
    Lin, Duoru
    Zhu, Yi
    Chen, Chuan
    Zhang, Li
    Xu, Fabao
    Jin, Chenjin
    Zhang, Xiayin
    Xiao, Hui
    Zhang, Kai
    Zhao, Lanqin
    Yu, Shanshan
    Zhang, Guoming
    Wang, Jiantao
    Lin, Haotian
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (22)
  • [4] Deep Learning for the Detection of Multiple Fundus Diseases Using Ultra-widefield Images
    Sun, Gongpeng
    Wang, Xiaoling
    Xu, Lizhang
    Li, Chang
    Wang, Wenyu
    Yi, Zuohuizi
    Luo, Huijuan
    Su, Yu
    Zheng, Jian
    Li, Zhiqing
    Chen, Zhen
    Zheng, Hongmei
    Chen, Changzheng
    OPHTHALMOLOGY AND THERAPY, 2023, 12 (02) : 895 - 907
  • [5] Deep Learning for the Detection of Multiple Fundus Diseases Using Ultra-widefield Images
    Gongpeng Sun
    Xiaoling Wang
    Lizhang Xu
    Chang Li
    Wenyu Wang
    Zuohuizi Yi
    Huijuan Luo
    Yu Su
    Jian Zheng
    Zhiqing Li
    Zhen Chen
    Hongmei Zheng
    Changzheng Chen
    Ophthalmology and Therapy, 2023, 12 : 895 - 907
  • [6] Incidence of macular displacement after rhegmatogenous retinal detachment surgery using ultra-widefield fundus autofluorescence
    Sauveur, Guy de Saint
    Sayadi, Sana
    Lejoyeux, Raphael
    Salviat, Flore
    Tadayoni, Ramin
    Bruneau, Sebastien
    Bonnin, Sophie
    Le Mer, Yannick
    INTERNATIONAL OPHTHALMOLOGY, 2024, 44 (01)
  • [7] Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning
    Zhongwen Li
    Chong Guo
    Danyao Nie
    Duoru Lin
    Tingxin Cui
    Yi Zhu
    Chuan Chen
    Lanqin Zhao
    Xulin Zhang
    Meimei Dongye
    Dongni Wang
    Fabao Xu
    Chenjin Jin
    Ping Zhang
    Yu Han
    Pisong Yan
    Haotian Lin
    Eye, 2022, 36 : 1681 - 1686
  • [8] Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning
    Li, Zhongwen
    Guo, Chong
    Nie, Danyao
    Lin, Duoru
    Cui, Tingxin
    Zhu, Yi
    Chen, Chuan
    Zhao, Lanqin
    Zhang, Xulin
    Dongye, Meimei
    Wang, Dongni
    Xu, Fabao
    Jin, Chenjin
    Zhang, Ping
    Han, Yu
    Yan, Pisong
    Lin, Haotian
    EYE, 2022, 36 (08) : 1681 - 1686
  • [9] Deep Learning for Automatic Detection of Recurrent Retinal Detachment after Surgery Using Ultra-Widefield Fundus Images: A Single-Center Study
    Zhou, Wen-Da
    Dong, Li
    Zhang, Kai
    Wang, Qian
    Shao, Lei
    Yang, Qiong
    Liu, Yue-Ming
    Fang, Li-Jian
    Shi, Xu-Han
    Zhang, Chuan
    Zhang, Rui-Heng
    Li, He-Yan
    Wu, Hao-Tian
    Wei, Wen-Bin
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (09)
  • [10] Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images
    Li, Zhongwen
    Guo, Chong
    Nie, Danyao
    Lin, Duoru
    Zhu, Yi
    Chen, Chuan
    Xiang, Yifan
    Xu, Fabao
    Jin, Chenjin
    Zhang, Xiayin
    Yang, Yahan
    Zhang, Kai
    Zhao, Lanqin
    Zhang, Ping
    Han, Yu
    Yun, Dongyuan
    Wu, Xiaohang
    Yan, Pisong
    Lin, Haotian
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02):