Some remarks on interpolation and best approximation

被引:3
作者
Bank, Randolph E. [1 ]
Ovall, Jeffrey S. [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
基金
美国国家科学基金会;
关键词
65N15; 65N30; 65N50;
D O I
10.1007/s00211-017-0877-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are provided for establishing equivalence between best approximation error and projection/interpolation error in finite-dimensional vector spaces for general (semi)norms. The results are applied to several standard finite element spaces, modes of interpolation and (semi)norms, and a numerical study of the dependence on polynomial degree of constants appearing in our estimates is provided.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 12 条
[1]  
[Anonymous], SPRINGER INDAM SER
[2]  
Bank R. E., 1996, Acta Numerica, V5, P1, DOI 10.1017/S0962492900002610
[3]   A note on interpolation, best approximation, and the saturation property [J].
Bank, Randolph E. ;
Yserentant, Harry .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :199-203
[4]   LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION [J].
BRUTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :694-704
[5]   Justification of the saturation assumption [J].
Carstensen, C. ;
Gallistl, D. ;
Gedicke, J. .
NUMERISCHE MATHEMATIK, 2016, 134 (01) :1-25
[6]  
Demkowicz L., 2008, Mixed Finite Elements, Compatibility Conditions, and Applications, P101
[7]   Small data oscillation implies the saturation assumption [J].
Dörfler, W ;
Nochetto, RH .
NUMERISCHE MATHEMATIK, 2002, 91 (01) :1-12
[8]  
Monk P., 2003, NUMERICAL MATH SCI C, DOI [DOI 10.1093/ACPROF:OSO/9780198508885.001.0001, 10.1093/acprof:oso/9780198508885.001.0001]
[9]  
Smith SJ, 2006, ANN MATH INFORM, V33, P109
[10]   Robust Localization of the Best Error with Finite Elements in the Reaction-Diffusion Norm [J].
Tantardini, Francesca ;
Veeser, Andreas ;
Verfuerth, Ruediger .
CONSTRUCTIVE APPROXIMATION, 2015, 42 (02) :313-347