Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9

被引:111
作者
El-Mounadi, Kaoutar [1 ]
Luisa Morales-Floriano, Maria [2 ,3 ,4 ]
Garcia-Ruiz, Hernan [3 ,4 ]
机构
[1] Kuztown Univ Penn, Dept Biol, Kuztown, PA USA
[2] Colegio Postgrad, Recursos Genet & Prod Genet, Texcoco, Montecillo, Mexico
[3] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68583 USA
[4] Univ Nebraska, Nebraska Ctr Virol, Lincoln, NE 68588 USA
基金
美国食品与农业研究所;
关键词
genome editing; CRISPR-Cas9; Cas9 human exposure; plant breeding; biosafety regulations; DOUBLE-STRAND BREAKS; GENES AFFECTING REPLICATION; SITE-DIRECTED MUTAGENESIS; LACTOBACILLUS-PLANTARUM; TARGETED MUTAGENESIS; HOMOLOGOUS RECOMBINATION; TETRAPLOID POTATO; DNA RECOGNITION; IMMUNE-SYSTEM; MOUSE MODEL;
D O I
10.3389/fpls.2020.00056
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The terms genome engineering, genome editing, and gene editing, refer to modifications (insertions, deletions, substitutions) in the genome of a living organism. The most widely used approach to genome editing nowadays is based on Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 (CRISPR-Cas9). In prokaryotes, CRISPR-Cas9 is an adaptive immune system that naturally protects cells from DNA virus infections. CRISPR-Cas9 has been modified to create a versatile genome editing technology that has a wide diversity of applications in medicine, agriculture, and basic studies of gene functions. CRISPR-Cas9 has been used in a growing number of monocot and dicot plant species to enhance yield, quality, and nutritional value, to introduce or enhance tolerance to biotic and abiotic stresses, among other applications. Although biosafety concerns remain, genome editing is a promising technology with potential to contribute to food production for the benefit of the growing human population. Here, we review the principles, current advances and applications of CRISPR-Cas9-based gene editing in crop improvement. We also address biosafety concerns and show that humans have been exposed to Cas9 protein homologues long before the use of CRISPR-Cas9 in genome editing.
引用
收藏
页数:16
相关论文
共 177 条
[41]  
GARCIARUIZ H, 2018, VIRUSES-BASEL, V10, DOI DOI 10.3390/V10090484
[42]   The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J].
Garneau, Josiane E. ;
Dupuis, Marie-Eve ;
Villion, Manuela ;
Romero, Dennis A. ;
Barrangou, Rodolphe ;
Boyaval, Patrick ;
Fremaux, Christophe ;
Horvath, Philippe ;
Magadan, Alfonso H. ;
Moineau, Sylvain .
NATURE, 2010, 468 (7320) :67-71
[43]   Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage [J].
Gaudelli, Nicole M. ;
Komor, Alexis C. ;
Rees, Holly A. ;
Packer, Michael S. ;
Badran, Ahmed H. ;
Bryson, David I. ;
Liu, David R. .
NATURE, 2017, 551 (7681) :464-+
[44]   A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus [J].
Giner, Ana ;
Pascual, Laura ;
Bourgeois, Michael ;
Gyetvai, Gabor ;
Rios, Pablo ;
Pico, Belen ;
Troadec, Christelle ;
Bendahmane, Abdel ;
Garcia-Mas, Jordi ;
Montserrat Martin-Hernandez, Ana .
SCIENTIFIC REPORTS, 2017, 7
[45]   Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions [J].
Gorbunova, V ;
Levy, AA .
NUCLEIC ACIDS RESEARCH, 1997, 25 (22) :4650-4657
[46]   A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes [J].
Haft, DH ;
Selengut, J ;
Mongodin, EF ;
Nelson, KE .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (06) :474-483
[47]   CRISPR/Cas, the Immune System of Bacteria and Archaea [J].
Horvath, Philippe ;
Barrangou, Rodolphe .
SCIENCE, 2010, 327 (5962) :167-170
[48]   Agriculture in 2050: Recalibrating Targets for Sustainable Intensification [J].
Hunter, Mitchell C. ;
Smith, Richard G. ;
Schipanski, Meagan E. ;
Atwood, Lesley W. ;
Mortensen, David A. .
BIOSCIENCE, 2017, 67 (04) :385-390
[49]   CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection [J].
Iaffaldano, Brian ;
Zhang, Yingxiao ;
Cornish, Katrina .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 89 :356-362
[50]   NUCLEOTIDE-SEQUENCE OF THE IAP GENE, RESPONSIBLE FOR ALKALINE-PHOSPHATASE ISOZYME CONVERSION IN ESCHERICHIA-COLI, AND IDENTIFICATION OF THE GENE-PRODUCT [J].
ISHINO, Y ;
SHINAGAWA, H ;
MAKINO, K ;
AMEMURA, M ;
NAKATA, A .
JOURNAL OF BACTERIOLOGY, 1987, 169 (12) :5429-5433